Catalytic Function and Expression of Glutathione Transferase Zeta

  • Philip G. Board
  • M. W. Anders
  • Anneke C. Blackburn
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The zeta class of glutathione S-transferases (GSTZ) is one of the most recently discovered soluble GST classes and has proved to be of considerable interest because of its contribution to the catabolism of phenylalanine and tyrosine and its role in α-halo acid metabolism. GSTZ was originally discovered as a result of a bioinformatic approach to gene discovery in the mid-1990s. This approach and others have also led to the discovery of several polymorphic forms of GSTZ. This chapter summarizes methods and approaches that have been used to express recombinant GSTZ, determine its crystal structure, measure its activity and characterize its kinetic properties, and study the function and importance of GSTZ in the metabolism of dichloroacetate (DCA), which is of great toxicological and public health interest. DCA is a multisite toxicant and carcinogen that is a byproduct of water chlorination and is a breakdown product of the industrial chemical and environmental contaminant trichloroethylene.

Key Words

Bioinformatics BLAST programs dichloroacetic acid expressed sequence tag fumarylaceto-acetate hydrolase gene knockout glutathione S-transferase-zeta glyoxylic acid α-halo acids leukotrienes maleylacetoacetate isomerase polymorphisms single nucleotide polymorphisms 


  1. 1.
    Jakobsson PJ, Morgenstern R, Mancini J, Ford-Hutchinson A, Persson B. Common structural features of MAPEG—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 1999;8:689–692.PubMedCrossRefGoogle Scholar
  2. 2.
    Sheehan D, Meade G, Foley VM, Dowd, CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 2001;360:1–16.PubMedCrossRefGoogle Scholar
  3. 3.
    Mannervik B, Awasthi YC, Board PG, et al. Nomenclature for human glutathione transferases. Biochem J 1992;282:305–306.PubMedGoogle Scholar
  4. 4.
    Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 2002;49:515–532.PubMedCrossRefGoogle Scholar
  5. 5.
    Sawicki R, Singh SP, Mondal AK, Benes H, Zimniak P. Cloning, expression and biochemical characterization of one epsilon-class (GST-3) and ten delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the epsilon class. Biochem J 2003;370:661–669.PubMedCrossRefGoogle Scholar
  6. 6.
    Board PG, Webb GC. Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12. Proc Natl Acad Sci USA 1987;84:2377–2381.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross VL, Board PG, Webb GC. Chromosomal mapping of the human Mu class glutathione S-transferases to 1p13. Genomics 1993;18:87–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Whitbread AK, Tetlow N, Eyre HJ, Sutherland GR, Board PG. Characterization of the human omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003;13:131–144.PubMedCrossRefGoogle Scholar
  9. 9.
    Board PG, Webb GC, Coggan M. Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet 1989;53:205–213.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanaoka Y, Fujimori K, Kikuno R, Sakaguchi Y, Urade Y, Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem 2000;267:3315–3322.PubMedCrossRefGoogle Scholar
  11. 11.
    Tan KL, Webb GC, Baker RT, Board PG. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22. Genomics 1995;25:381–387.PubMedCrossRefGoogle Scholar
  12. 12.
    Blackburn AC, Woollatt E, Sutherland GR, Board PG. Characterization and chromosome location of the gene GSTZ1 encoding the human zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet 1998;83: 109–114.PubMedCrossRefGoogle Scholar
  13. 13.
    Dulhunty A, Gage P, Curtis S, Chelvanayagam G, Board P. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem 2001;276:3319–3323.PubMedCrossRefGoogle Scholar
  14. 14.
    Pemble SE, Wardle AF, Taylor JB. Glutathione S-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 1996;319:749–754.PubMedGoogle Scholar
  15. 15.
    Board PG, Baker RT, Chelvanayagam G, Jermiin LS. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 1997; 328:929–935.PubMedGoogle Scholar
  16. 16.
    Litwack G, Ketterer B, Arias IM. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature 1971; 234:466–467.PubMedCrossRefGoogle Scholar
  17. 17.
    Mannervik B, Danielson UH. Glutathione transferases—structure and catalytic activity. CRC Crit Rev Biochem 1988;23:283–337.PubMedCrossRefGoogle Scholar
  18. 18.
    Board PG. Identification of cDNAs encoding two human alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochem J 1998;330:827–831.PubMedGoogle Scholar
  19. 19.
    Hubatsch I, Ridderstrom M, Mannervik B. Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxy-nonenal and other genotoxic products of lipid peroxidation. Biochem J 1998;330: 175–179.PubMedGoogle Scholar
  20. 20.
    Johansson AS, Mannervik B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J Biol Chem 2001;276:33061–33065.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanaoka Y, Ago H, Inagaki E, et al. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell 1997;90:1085–1095.PubMedCrossRefGoogle Scholar
  22. 22.
    Fernández-Cñóon JM, Penalva MA. Characterization of a fungal maleylaceto-acetate isomerase gene and identification of its human homologue. J Biol Chem 1998;273:329–337.CrossRefGoogle Scholar
  23. 23.
    Tong Z, Board PG, Anders MW. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J 1998; 331:371–374.PubMedGoogle Scholar
  24. 24.
    Tomarev SI, Zinovieva RD, Piatigorsky J. Characterization of squid crystallin genes. Comparison with mammalian glutathione S-transferase genes. J Biol Chem 1992;267:8604–8612.PubMedGoogle Scholar
  25. 25.
    Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. EMBO J 1999;18:1321–1334.PubMedCrossRefGoogle Scholar
  26. 26.
    Cho SG, Lee YH, Park HS, et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 2001;276:12749–12755.PubMedCrossRefGoogle Scholar
  27. 27.
    Harrop SJ, DeMaere MZ, Fairlie WD, et al. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J Biol Chem 2001;276:44993–5000.PubMedCrossRefGoogle Scholar
  28. 28.
    Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 1997;25:3389–3402.PubMedCrossRefGoogle Scholar
  29. 29.
    Board PG, Coggan M, Chelvanayagam G, et al. Identification, characterization and crystal structure of the omega class glutathione transferases. J Biol Chem 2000;275:24798–24806.PubMedCrossRefGoogle Scholar
  30. 30.
    Board P, Tetlow N, Blackburn A, Chelvanayagam G. Database analysis and gene discovery in pharmacogenetics. Clin Chem Lab Med 2000;38:863–867.PubMedCrossRefGoogle Scholar
  31. 31.
    Board P, Blackburn A, Jermiin LS, Chelvanayagam G. Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis. Toxicol Lett 1998;102–103:149–154.PubMedCrossRefGoogle Scholar
  32. 32.
    Tetlow N, Liu D, Board P. Polymorphism of human alpha class glutathione transferases. Pharmacogenetics 2001;11:609–617.PubMedCrossRefGoogle Scholar
  33. 33.
    Blackburn AC, Tzeng HF, Anders MW, Board PG. Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics 2000;10:49–57.PubMedCrossRefGoogle Scholar
  34. 34.
    Blackburn AC, Coggan M, Tzeng HF, et al. GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. Pharmacogenetics 2001;11:671–678.PubMedCrossRefGoogle Scholar
  35. 35.
    Board PG, Pierce K. Expression of human glutathione S-transferase 2 in Escherichia coli. Immunological comparison with the basic glutathione S-transferases isoenzymes from human liver. Biochem J 1987;248:937–941.PubMedGoogle Scholar
  36. 36.
    Ross VL, Board PG. Molecular cloning and heterologous expression of an alternatively spliced human Mu class glutathione S-transferase transcript. Biochem J 1993;294 (Pt 2):373–380.PubMedGoogle Scholar
  37. 37.
    Baker RT, Smith SA, Marano R, McKee J, Board PG. Protein expression using cotranslational fusion and cleavage of ubiquitin. Mutagenesis of the glutathione-binding site of human Pi class glutathione S-transferase. J Biol Chem 1994;269: 25381–25386.PubMedGoogle Scholar
  38. 38.
    Tan KL, Chelvanayagam G, Parker MW, Board PG. Mutagenesis of the active site of the human theta-class glutathione transferase GSTT2-2: catalysis with different substrates involves different residues. Biochem J 1996;319:315–321.PubMedGoogle Scholar
  39. 39.
    Porath J, Olin B. Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 1983;22:1621–1630.PubMedCrossRefGoogle Scholar
  40. 40.
    Tzeng HF, Blackburn AC, Board PG, Anders MW. Polymorphism-and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol 2000;13:231–236.PubMedCrossRefGoogle Scholar
  41. 41.
    Lantum HB, Board PG, Anders MW. Kinetics of the biotransformation of maleylacetone and chlorofluoroacetic acid by polymorphic variants of human glutathione transferase zeta (hGSTZ1-1). Chem Res Toxicol 2002;15:957–963.PubMedCrossRefGoogle Scholar
  42. 42.
    Polekhina G, Board PG, Blackburn AC, Parker MW. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry 2001;40:1567–1576.PubMedCrossRefGoogle Scholar
  43. 43.
    Thom R, Dixon DP, Edwards R, Cole, DJ, Lapthorn AJ. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J Mol Biol 2001;308:949–962.PubMedCrossRefGoogle Scholar
  44. 44.
    Lantum HB, Baggs RB, Krenitsky DM, Board PG, Anders MW. Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues. Drug Metab Dispos 2002;30:616–625.PubMedCrossRefGoogle Scholar
  45. 45.
    Anderson WB, Board PG, Gargano B, Anders MW. Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking alpha-haloalkanoic acids. Chem Res Toxicol 1999;12:1144–1149.PubMedCrossRefGoogle Scholar
  46. 45a.
    Lim CE, Matthaei KL, Blackburn AC, et al., Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. Am J Pathol 2004;165:679–693.PubMedCrossRefGoogle Scholar
  47. 46.
    Tong Z, Board PG, Anders MW. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids. Chem Res Toxicol 1998;11:1332–1338.PubMedCrossRefGoogle Scholar
  48. 47.
    Board PG, Taylor MC, Coggan M, Parker MW, Lantum HB, Anders MW. Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochem J 2003;374:731–737.PubMedCrossRefGoogle Scholar
  49. 48.
    Russo P, O’Regan S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 1990;47:317–324.PubMedGoogle Scholar
  50. 49.
    Mitchell GA, Grompe M, Lambert M, Tanquay RM. Hypertyrosiemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Disease, Vol. 2. New York: McGraw-Hill, 2001, pp. 1777–1805.Google Scholar
  51. 50.
    Lindblad B, Steen G. Identification of 4,6-dioxoheptanoic acid (succinylacetone), 3,5-dioxooctanedioic acid (succinylacetoacetate) and 4-oxo-6-hydroxyheptanoic acid in the urine from patients with hereditary tyrosinemia. Biomed Mass Spectrom 1982;9:419–424.PubMedCrossRefGoogle Scholar
  52. 51.
    Lindblad B, Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci USA 1977;74:4641–4645.PubMedCrossRefGoogle Scholar
  53. 52.
    Sassa S, Kappas A. Hereditary tyrosinemia and the heme biosynthetic pathway. Profound inhibition of delta-aminolevulinic acid dehydratase activity by succinyl-acetone. J Clin Invest 1983;71:625–634.PubMedCrossRefGoogle Scholar
  54. 53.
    Berger R, Michals K, Galbraeth J, Matalon R. Tyrosinemia type 1b caused by maleylacetoacetate isomerase deficiency: a new enzyme defect. Pediatr Res 1988; 23:328A.Google Scholar
  55. 54.
    Fowler J, Seltzer S. Synthesis of model compounds for maleylacetoacetic acid. J Org Chem 1970;35:3529–3532.CrossRefGoogle Scholar
  56. 55.
    Seltzer S. Purification and properties of maleylacetone cis-trans isomerase from vibrio 01. J Biol Chem 1973;248:215–222.PubMedGoogle Scholar
  57. 56.
    Anandarajah K, Kiefer PM Jr, Donohoe BS, Copley SD. Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry 2000;39:5303–5311.PubMedCrossRefGoogle Scholar
  58. 57.
    Lipscomb JC, Mahle DA, Brashear WT, Barton HA. Dichloroacetic acid: metabolism in cytosol. Drug Metab Dispos 1995;23:1202–1205.PubMedGoogle Scholar
  59. 58.
    James MO, Cornett R, Yan Z, Henderson GN, Stacpoole PW. Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats. Drug Metab Dispos 1997;25:1223–1227.PubMedGoogle Scholar
  60. 59.
    Haber LT, Maier A, Gentry PR, Clewell HJ, Dourson ML. Genetic polymorphisms in assessing interindividual variability in delivered dose. Regul Toxicol Pharmacol 2002;35:177–197.PubMedCrossRefGoogle Scholar
  61. 60.
    Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ. Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology 1990;63:341–359.PubMedCrossRefGoogle Scholar
  62. 61.
    DeAngelo AB, Daniel FB, Most BM, Olson GR. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat. Toxicology 1996;114:207–221.PubMedCrossRefGoogle Scholar
  63. 62.
    Boorman GA. Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Hlth Perspect 1999;107 (Suppl 1):207–217.CrossRefGoogle Scholar
  64. 63.
    Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM. The occurence of disinfection by-products in U.S. drinking water. J Am Waterworks Assoc 1989;81:41–53.Google Scholar
  65. 64.
    Stacpoole PW, Henderson GN, Yan Z, James MO. Clinical pharmacology and toxicology of dichloroacetate. Environ Hlth Perspect 1998;106 (Suppl 4):989–994.CrossRefGoogle Scholar
  66. 65.
    Stacpoole PW, Henderson GN, Yan Z, Cornett R, James MO. Pharmacokinetics, metabolism and toxicology of dichloroacetate. Drug Metab Rev 1998;30:499–539.PubMedCrossRefGoogle Scholar
  67. 66.
    Cornett R, James MO, Henderson GN, Cheung J, Shroads AL, Stacpoole PW. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem Biophys Res Commun 1999;262:752–756.PubMedCrossRefGoogle Scholar
  68. 67.
    Armstrong RN. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 1997;10:2–18.PubMedCrossRefGoogle Scholar
  69. 68.
    Oakley AJ, Bello ML, Battistoni A, Ricci G, Rossjohn J, Villar HO, Parker MW. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. J Mol Biol 1997;274:84–100.PubMedCrossRefGoogle Scholar
  70. 69.
    Anderson WB, Liebler DC, Board PG, Anders MW. Mass spectral characterization of dichloroacetic acid-modified human glutathione transferase zeta. Chem Res Toxicol 2002;15:1387–1397.PubMedCrossRefGoogle Scholar
  71. 70.
    Curry SH, Lorenz A, Chu PI, Limacher M, Stacpoole PW. Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm Drug Dispos 1991;12:375–390.PubMedCrossRefGoogle Scholar
  72. 71.
    Fernandez-Canon JM, Baetscher MW, Finegold M, Burlingame T, Gibson KM, Grompe M. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 2002;22:4943–4951.PubMedCrossRefGoogle Scholar
  73. 72.
    Lantum HB, Cornejo J, Pierce RH, Anders MW. Perturbation of maleylacetoacetic acid metabolism in rats with dichloroacetic acid-induced glutathione transferase zeta deficiency. Toxicol Sci 2003;74:192–202.PubMedCrossRefGoogle Scholar
  74. 73.
    Saghir SA, Schultz IR. Low-dose pharmacokinetics and oral bioavailability of dichloroacetate in naive and GST-zeta-depleted rats. Environ Hlth Perspect 2002; 110:757–763.CrossRefGoogle Scholar
  75. 74.
    Schultz, IR, Sylvester SR. Stereospecific toxicokinetics of bromochloro-and chlorofluoroacetate: effect of GST-zeta depletion. Toxicol Appl Pharmacol 2001; 175:104–113.PubMedCrossRefGoogle Scholar
  76. 75.
    Schultz IR, Merdink JL, Gonzalez-Leon A, Bull RJ. Dichloroacetate toxicokinetics and disruption of tyrosine catabolism in B6C3F1 mice: dose-response relationships and age as a modifying factor. Toxicology 2002;173:229–247.PubMedCrossRefGoogle Scholar
  77. 76.
    Izumi M, Hirayama Y, Sugai K, et al. Adverse effects of dichloroacetate in a girl with mitochondrial disorder. No To Hattatsu 2003;35:54–58.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Philip G. Board
    • 1
  • M. W. Anders
    • 2
  • Anneke C. Blackburn
    • 1
  1. 1.Molecular Genetics, Division of Molecular Bioscience, Institute of Advanced Studies, The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  2. 2.Department of Pharmacology and PhysiologyUniversity of RochesterRochester

Personalised recommendations