Advertisement

Glucuronidation of Fatty Acids and Prostaglandins by Human UDP-Glucuronosyltransferases

  • Anna Radominska-Pandya
  • Joanna M. Little
  • Arthur Bull
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

This chapter summarizes methods and experimental approaches involved in the study of glucuronidation of several naturally occurring metabolites of the free fatty acids (FFAs), linoleic acid (LA), and arachidonic acid (AA). Data on FA glucuronidation from both human liver micro-somes and human recombinant UDP-glucuronosyltransferase 2B7 (UGT2B7) are presented. Several unique methods for synthesis of FAs that are not commercially available are also described. Moreover, comprehensive methods for measurements of FA glucuronidation, isolation of biosynthesized glucuronides, and analysis by HPLC, HPLC–MS, and GC–MS are discussed in detail. The enzymatic assays presented in this chapter can also be used for studying glucuronidation of other hydrophobic endogenous compounds, including many drugs and environmental pollutants. The potential value of these methods is highlighted by the growing appreciation of the roles of FFA and FA-glucuronides in human health and disease.

Key Words

Arachidonic acid eiconsanoids epoxides fatty acids fatty acid derivatives synthesis fatty acid glucuronides gas chromatography–mass spectrometry glucuronidation assays high-performance liquid chromatography high-performance liquid chromatography–mass spectrometry human linoleic acid liquid chromatography–mass spectrometry peroxisome proliferator-activated receptor prostaglandins thin layer chromatography UDP-glucuronosyltransferases UGT2B7 

References

  1. 1.
    Eling TE, Glasgow WC. Cellular proliferation and lipid metabolism: importance of lipoxygenases in modulating epidermanl growth factor-dependent mitogenesis. Cancer Metast Rev 1994;13:397–410.CrossRefGoogle Scholar
  2. 2.
    Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma. Cell 1998;93:229–240.PubMedCrossRefGoogle Scholar
  3. 3.
    Sauer LA, Dauchy RT, Blask De, Armstrong BJ, Scalici S. 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Res 1999;59:4688–4692.PubMedGoogle Scholar
  4. 4.
    Bronstein JC, Bull AW. The correlation between 13-hydroxyoctadecadienoate dehydrogenase (13-HODE dehydrogenase) and intestinal cell differentiation. Prostaglandins 1993;46:387–395.PubMedCrossRefGoogle Scholar
  5. 5.
    Mansen A, Guardiola-Diaz A, Rafter J, Branting C, Gustafsson J-A. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem Biophys Res Commun 1996;222:844–851.PubMedCrossRefGoogle Scholar
  6. 6.
    Kosaka K, Suzuki K, Hayakawa M, Sugiyama S, Ozawa T. Leukotoxin, a linoleic epoxide: its implication in the late death of patients with extensive burns. Mol Cell Biochem 1994;139:141–148.PubMedCrossRefGoogle Scholar
  7. 7.
    Ozawa T, Hayakawa M, Kosaka K, et al. Leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin causing adult respiratory distress syndrome. Adv Prostaglandin Thromboxane Leuk Res 1991;21B:569–572.Google Scholar
  8. 8.
    Moghaddam MF, Grand DF, Cheek JM, Greene JF, Williamson KC, Hammock BD. Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med 1997;3:562–566.PubMedCrossRefGoogle Scholar
  9. 9.
    Moran JH, Weise R, Schnellmann RG, Freeman JP, Grant DF. Cytotoxicity of linoleic acid diols to renal proximal tubular cells. Toxicol Appl Pharmacol 1997; 146:53–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Stimers JR, Dobretsov M, Hastings SL, Jude AR, Grant DF. Effects of linoleic acid metabolites on electrical activity in adult rat ventricular myocytes. Biochim Biophys Acta 1999;1438:359–368.PubMedGoogle Scholar
  11. 11.
    Cho Y, Ziboh VA. Incorporation of 13-hydroxyoctadecadienoic acid (13-HODE) into epidermal ceramides and phospholipids: phospholipase C-catalyzed release of novel 13-HODE-containing diacylglycerol. J Lipid Res 1994;35:255–262.PubMedGoogle Scholar
  12. 12.
    Liu B, Khan WA, Hannun YA, et al. 12(S)-Hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-α in melanoma cells: role of receptor-mediated hydrolysis of inositol phospholipids. Proc Natl Acad Sci USA 1995;92:9323–9327.PubMedCrossRefGoogle Scholar
  13. 13.
    Pongracz J, Lord JM. The lipoxygenase product 13-hydroxyoctadecadienoic acid (13-HODE) is a selective inhibitor of classical PKC isoenzymes. Biochem Biophys Res Commun 1999;256:269–272.PubMedCrossRefGoogle Scholar
  14. 14.
    Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38:97–120.PubMedCrossRefGoogle Scholar
  15. 15.
    Funk CD. The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta 1996;1304:65–84.PubMedGoogle Scholar
  16. 16.
    Ghosh J, Myers CE. Inhibition of arachindonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 1998;95: 13182–13187.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelavkar UP, Nixon JB, Cohen C, Dillehay D, Eling TE, Badr KF. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis 2000;22:1765–1773.CrossRefGoogle Scholar
  18. 18.
    Nie D, Tang K, Diglio C, Honn KV. Eicosnaoid regualtion of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood 2000;95:2304–2311.PubMedGoogle Scholar
  19. 19.
    Payan DG, Goetzl EJ. Specific suppression of human T lymphocyte function by leukotriene B4. J Immunol 1998;131:551–553.Google Scholar
  20. 20.
    Hwang D, Rhee SH. Receptor-mediated signaling pathways: potential targets of modulation by dietary fatty acids. Am J Clin Nutr 1999;70:545–556.PubMedGoogle Scholar
  21. 21.
    Kitareewan S, Burka LT, Tomer KB, et al. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell 1996;7: 1153–1166.PubMedGoogle Scholar
  22. 22.
    Lemotte PK, Keidel S, Apfel CM. Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 1996;236:328–333.PubMedCrossRefGoogle Scholar
  23. 23.
    Zomer AW, van der Burg B, Jansen GA, Wanders RJA, Poll-The BT, van der Saag PT. Pristanic acid and phytanic acid: naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J Lipid Res 2000;41: 1801–1807.PubMedGoogle Scholar
  24. 24.
    de Urquiza AM, Liu S, Sjoberg M, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000;290:2140–2144.PubMedCrossRefGoogle Scholar
  25. 25.
    Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 1993; 90:2160–2164.PubMedCrossRefGoogle Scholar
  26. 26.
    Radominska-Pandya A, Czernik P, Little JM, Battaglia E, Mackenzie PI. Structural and functional studies of UDP-glucuronsyltransferases. Drug Metab Rev 1999;31:817–900.PubMedCrossRefGoogle Scholar
  27. 27.
    Prakash C, Zhang JY, Falck JR, Chauhan K, Blair JA. 20-Hydroxyeicosatetraenoic acid is excreted as a glucuronide conjugate in human urine. Biochem Biophys Res Commun 1992;185:728–733.PubMedCrossRefGoogle Scholar
  28. 28.
    Street JM, Evans JE, Natowicz MR. Glucuronic acid-conjugated dihydroxy fatty acids in the urine of patients with generalized peroxisomal disorders. J Biol Chem 1996;271:3507–3516.PubMedCrossRefGoogle Scholar
  29. 29.
    Sacerdoti D, Balazy M, Angeli P, Gatta A, McGiff JC. Eicosanoid excretion in hepatic cirrhosis. Predominance of 20-HETE. J Clin Invest 1997;100:1264–1270.PubMedCrossRefGoogle Scholar
  30. 30.
    Wheelan P, Hankin JA, Bilir B, Guenette D, Murphy RC. Metabolic transformation of leukotriene B4 in primary cultures of human hepatocytes. J Pharmacol Exp Ther 1999;288:326–334.PubMedGoogle Scholar
  31. 31.
    Hankin JA, Wheelan P, Murphy RC. Identification of novel metabolites of prostaglandin E2 formed by isolated rat hepatocytes. Arch Biochem Biophys 1997; 340:317–330.PubMedCrossRefGoogle Scholar
  32. 32.
    Jude AR, Little JM, Freeman JP, Evans JE, Radominska-Pandya A, Grant DF. Linoleic acid diols are novel substrates for human UDP-glucuronosyltransferases. Arch Biochem Biophys 2000;380:294–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Jude AR, Little JM, Czernik P, Tephly TR, Grant DF, Radominska-Pandya A. Glucuronidation of linoleic acid diols by human microsomal and recombinant UDP-glucuronosyltransferases: identification of UGT2B7 as the major isoform involved. Arch Biochem Biophys 2001;389:176–186.PubMedCrossRefGoogle Scholar
  34. 34.
    Jude AR, Little JM, Bull AW, Podgorski I, Radominska-Pandya A. 13-Hydroxy-and 13-oxooctadecadienoic acids: novel substrates for human UDP-glucuronosyltransferases. Drug Metab Dispos 2001;29:652–655.PubMedGoogle Scholar
  35. 35.
    Radominska-Pandya A, Czernik PJ, Little JM. Human UDP-glucuronosyltransferase 2B7. Curr Drug Metab 2001;2:283–298.PubMedCrossRefGoogle Scholar
  36. 36.
    Bull AW, Seeley SK, Geno JL, Mannervik B. Conjugation of the linoleic acid oxidation product, 13-oxooctadecadienoic acid, a bioactive endogenous substrate for mamalian glutathione transferase. Biochim Biophys Acta 2002;1571:77–82.PubMedGoogle Scholar
  37. 37.
    Little JM, Williams L, Xu J, Radominska-Pandya A. Glucuronidation of the dietary fatty acids, phytanic acid and docosahexaenoic acid, by human UDP-glucuronosyltransferases. Drug Metab Dispos 2002;30:531–533.PubMedCrossRefGoogle Scholar
  38. 38.
    Sonka J, Little JM, Samokyszyn V, Radominska-Pandya A. Glucuronidation of arachidonic acid, 20-HETE and prostaglandin E2 by human hepatic and intestinal UDR-glucuronosyltransferases and recombinant UGT2B7. Drug Metab Rev 2002; 34(Suppl 1):194.Google Scholar
  39. 39.
    Turgeon D, Chouinard S, Belanger P, Picard S, Labbe JF, Borgeat P, Belanger A. Glucuronidation of arachidonic and linoleic acid metabolites by human UDP-glucuronosyltransferase. J Lipid Res 2003;44:1182–1191.PubMedCrossRefGoogle Scholar
  40. 40.
    Funk MO, Isaac R, Porter NA. Preparation and purification of lipid hydroperoxides from arachidonic and γ-linolenic acids. Lipids 1976;11:113–117.PubMedCrossRefGoogle Scholar
  41. 41.
    Gardner HW. Lipoxygenase as a versatile biocatalyst. JAOCS 1979;73:1347–1357.CrossRefGoogle Scholar
  42. 42.
    Porter NA, Logan J, Kontoyiannaidou V. Preparation and purification of arachidonic acid hydroperoxides of biological importance. J Org Chem 1979;44:3177–3181.CrossRefGoogle Scholar
  43. 43.
    Bull AW, Nigro ND, Golembieski WA, Crissman JD, Marnett LJ. In vivo stimulation of DNA synthesis and induction of ornithine decarboxylase in rat colon by fatty acid hydroperoxides, autooxidation products of unsaturated fatty acids. Cancer Res 1984;44:4924–4928.PubMedGoogle Scholar
  44. 44.
    Abraham MH, Davies AG, Llewellyn DD, Thain EM. The chromatographic analysis of organic peroxides. Anal Chim Acta 1957;17:499–503.CrossRefGoogle Scholar
  45. 45.
    Graff G, Anderson LA, Jaques LW. Preparation and purification of soybean lipoxygenase-derived unsaturated hydroperoxy and hydroxy fatty acids and determination of molar absorptivities of hydroxy fatty acids. Anal Biochem 1990;188: 38–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Porter NA, Wujek JS. Allylic hydroperoxide rearrangement: β-scission or concerted pathway. J Org Chem 1987;52:5085–5089.CrossRefGoogle Scholar
  47. 47.
    Dutton GJ. Glucuronidation of Drugs and Other Compounds. Boca Raton, FL: CRC Press, 1980.Google Scholar
  48. 48.
    Little JM, Lehman PA, Nowell S, Samokyszyn V, Radominska A. Glucuronidation of all trans-retinoic acid and 5,6-epoxy-all trans-retinoic acid: Activation of rat liver microsomal UDP-glucuronosyltranferase activity by alamethicin. Drug Metab Dispos 1997;25:5–11.PubMedGoogle Scholar
  49. 49.
    Little JM, Radominska A. Application of photoaffinity labeling with [11,12-3H] all trans-retinoic acid to characterization of rat liver microsomal UDP-glucuronosyltransferase(s) with activity toward retinoic acid. Biochem Biophys Res Commun 1997;230:497–500.PubMedCrossRefGoogle Scholar
  50. 50.
    Radominska-Pyrek A, Zimniak P, Chari M, Golunski E, Lester R, Pyrek JS. Glucuronides of monohydroxylated bile acids: specificity of microsomal glucuronyltransferase for the glucuronidation site, C-3 configuration, and side chain length. J Lipid Res 1986;27:89–101.PubMedGoogle Scholar
  51. 51.
    Radominska-Pyrek A, Zimniak P, Irshaid YM, Lester R, Tephly TR, Pyrek JS. Glucuronidation of 6α-hydroxy bile acids by human liver microsomes. J Clin Invest 1987;80:234–241.PubMedCrossRefGoogle Scholar
  52. 52.
    Radominska-Pandya A, Little JM, Pandya JT, et al. UDP-Glucuronosyltransferases in human intestinal mucosa. Biochim Biophys Acta 1998;1394:199–208.PubMedGoogle Scholar
  53. 53.
    Panfil I, Lehman PA, Zimniak P, Ernst B, Franz T, Lester R, Radominska A. Biosynthesis and chemical synthesis of carboxyl-linked glucuronide of lithocholic acid. Biochim Biophys Acta 1992;1126:221–228.PubMedGoogle Scholar
  54. 54.
    Radominska A, Little JM, Pyrek JS, et al. A novel UDP-Glc-specific glucosyltransferase catalyzing the biosynthesis of 6-O-glucosides of bile acids in human liver microsomes. J Biol Chem 1993;268:15127–15135.PubMedGoogle Scholar
  55. 55.
    Zimniak P, Radominska A, Zimniak M, Lester R. Formation of three types of glucuronides of 6-hydroxy bile acids by rat liver microsomes. J Lipid Res 1988;29: 183–190.PubMedGoogle Scholar
  56. 56.
    Keski-Hynnilä H, Kurkela M, Elovaara E, et al. Comparison of elctrospray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization in the identification of apomorphine, dobutamine, and entacapone phase II metabolites of biological samples. Anal Chem 2002;74:3449–3457.PubMedCrossRefGoogle Scholar
  57. 57.
    Jude A, Little J, Gall W, Evans J, Grant D, Radominska-Pandya A. Linoleic acid diols: novel substrates for human liver UDP-glucuronosyltransferases. 1999 ASBMB Satellite Meeting, San Francisco, CA, 1999.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Anna Radominska-Pandya
    • 1
  • Joanna M. Little
    • 1
  • Arthur Bull
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical SciencesLittle Rock
  2. 2.Department of ChemistryOakland UniversityRochester

Personalised recommendations