Skip to main content

Fluorimetric DNA Assay of Cell Number

  • Protocol
Book cover Epidermal Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 289))

Abstract

This fluorimetric assay has utility for the accurate assessment of cultured epidermal cell numbers by virtue of their deoxyribonucleic acid content, which is the most significant correlate available. The improvement in fluorochromes in the recent past makes PicoGreen the dye of choice for this, with its greatly increased sensitivity (± 50 cells) over the Hoechst and DAPI stains and which remains linear over several orders of magnitude with a single dye concentration. The assay involves minimal liquid handling to achieve cell disruption by sodium dodecyl sulfate in saline sodium citrate buffer, and PicoGreen staining is rapidly assayed by a multiwell plate reading fluorimeter, which can be automated for robotic high throughput use. Highly fibrous cells like epidermal keratinocytes can be disrupted using 8 M urea and assayed after dilution. The assay is also compatible with tritiated thymidine incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rice, R. H. (1994) Assays for involucrin, transglutaminase and ionophore-inducible envelopes, in The Keratinocyte Handbook (Leigh, I. M. and Watt, F. M. E., eds.), Cambridge University Press, Cambridge, UK, pp. 157–165.

    Google Scholar 

  2. Takahashi, H., Ibe, M., Kinouchi, M., Ishida-Yamamoto, A., Hashimoto, Y., and Iizuka, H. (2003) Similarly potent action of 1,25-dihydroxyvitamin D3 and its analogues, tacalcitol, calcipotriol, and maxacalcitol on normal human keratinocyte proliferation and differentiation. J. Dermatol. Sci. 31, 21–28.

    Article  PubMed  CAS  Google Scholar 

  3. Otto, W. R. (1993) Assays in cell proliferation, in Cell and Tissue Culture: Laboratory Procedures (Doyle, A., Griffiths, J. B., and Newell, D. G. E., eds.), John Wiley, Chichester, UK, pp. 10E11.11–10E11.15.

    Google Scholar 

  4. Otto, W. R. (1993) Fluorimetric and spectrophotometric measures of cell number, in Cell and Tissue Culture: Laboratory Procedures (Doyle, A., Griffiths, J. B., and Newell, D. G E., eds.), John Wiley, Chichester, UK, pp. 4B2.1–4B2.10.

    Google Scholar 

  5. Ravid, K., Lu, J., Zimmet, J. M., and Jones, M. R. (2002) Roads to polyploidy: the megakaryocyte example. J. Cell Physiol. 190, 7–20.

    Article  PubMed  CAS  Google Scholar 

  6. Gupta, S. (2000) Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171.

    Article  PubMed  CAS  Google Scholar 

  7. Duesberg, P. and Rasnick, D. (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 47, 81–107.

    Article  PubMed  CAS  Google Scholar 

  8. Bachoon, D. S., Otero, E., and Hodson, R. E. (2001) Effects of humic substances on fluoro-metric DNA quantification and DNA hybridization. J. Microbiol. Methods 47, 73–82.

    Article  PubMed  CAS  Google Scholar 

  9. Cosa, G, Focsaneanu, K. S., McLean, J. R., McNamee, J. P., and Scaiano, J. C. (2001) Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution. Photochem. Photobiol. 73, 585–599.

    Article  PubMed  CAS  Google Scholar 

  10. McGowan, K. B., Kurtis, M. S., Lottman, L. M., Watson, D., and Sah, R. L. (2002) Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen and Hoechst 33258. Osteoarthritis Cartilage 10, 580–587.

    Article  PubMed  CAS  Google Scholar 

  11. Papadimitriou, E. and Lelkes, P. I. (1993) Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Methods 162, 41–45.

    Article  PubMed  CAS  Google Scholar 

  12. Rao, J. and Otto, W. R. (1992) Fluorimetric DNA assay for cell growth estimation. Anal. Biochem. 207, 186–192.

    Article  PubMed  CAS  Google Scholar 

  13. Rengarajan, K., Cristol, S. M., Mehta, M., and Nickerson, J. M. (2002) Quantifying DNA concentrations using fluorometry: a comparison of fluorophores. Mol. Vis. 8, 416–421.

    PubMed  CAS  Google Scholar 

  14. Singer, V. L., Jones, L. J., Yue, S. T., and Haugland, R. P. (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249, 228–238.

    Article  PubMed  CAS  Google Scholar 

  15. Belkacemi, Y, Piel, G., Rat, P., Julia, F, Touboul, E., Housset, M., and Warnet, J. M. (2000) Ionizing radiation-induced death in bovine lens epithelial cells: mechanisms and influence of irradiation dose rate. Int. J. Cancer 90, 138–144.

    Article  PubMed  CAS  Google Scholar 

  16. Blaheta, R. A., Kronenberger, B., Woitaschek, D., Weber, S., Scholz, M., Schuldes, H., et al. (1998) Development of an ultrasensitive in vitro assay to monitor growth of primary cell cultures with reduced mitotic activity. J. Immunol. Methods 211, 159–169.

    Article  PubMed  CAS  Google Scholar 

  17. Richards, W. L., Song, M. K., Krutzsch, H., Evarts, R. P., Marsden, E., and Thorgeirsson, S. S. (1985) Measurement of cell proliferation in microculture using Hoechst 33342 for the rapid semiautomated microfluorimetric determination of chromatin DNA. Exp. Cell Res. 159, 235–246.

    Article  PubMed  CAS  Google Scholar 

  18. Hukkelhoven, M. W., Vromans, E., Markslag, A. M., and Vermorken, A. J. (1981) A simple fluorimetric microassay for DNA in hair follicles or fractions of hair follicles. Anticancer Res. 1, 341–344.

    PubMed  CAS  Google Scholar 

  19. Serth, J., Kuczyk, M. A., Paeslack, U., Lichtinghagen, R., and Jonas, U. (2000) Quantitation of DNA extracted after micropreparation of cells from frozen and formalin-fixed tissue sections. Am. J. Pathol. 156, 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  20. Lindstrom, E. S., Weisse, T., and Stadler, P. (2002) Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. J. Microbiol. Methods 49, 173–182.

    Article  PubMed  Google Scholar 

  21. Markovits, J., Roques, B. P., and Le Pecq, J. B. (1979) Ethidium dimer: a new reagent for the fluorimetric determination of nucleic acids. Anal. Biochem. 94, 259–264.

    Article  PubMed  CAS  Google Scholar 

  22. Royce, P. M. and Lowther, D. A. (1979) Fluorimetric determination of DNA in papain digests of cartilage, using ethidium bromide. Connect. Tissue Res. 6, 215–221.

    Article  PubMed  CAS  Google Scholar 

  23. Li, D. H., Chen, X. L., Fang, Y., and Xu, J. G. (2001) Determination of nucleic acids based on shifting the association equilibrium between tetrasulfonated aluminium phthalocyanine and acridine orange. Analyst 126, 518–522.

    Article  PubMed  CAS  Google Scholar 

  24. Haugland, R. P. (2002) Handbook of Fluorescent Probes and Research Products, 9th ed. Molecular Probes, Eugene, OR.

    Google Scholar 

  25. Jones, L. J., Yue, S. T., Cheung, C. Y., and Singer, V. L. (1998) RNA quantitation by fluorescence-based solution assay: riboGreen reagent characterization. Anal. Biochem. 265, 368–374.

    Article  PubMed  CAS  Google Scholar 

  26. Monpoeho, S., Dehee, A., Mignotte, B., Schwartzbrod, L., Marechal, V., Nicolas, J. C., et al. (2000) Quantification of enterovirus RNA in sludge samples using single tube realtime RT-PCR. Biotechniques 29, 88–93.

    PubMed  CAS  Google Scholar 

  27. Larson, E. J., Hakovirta, J. R., Cai, H., Jett, J. H., Burde, S., Keller, R. A., et al. (2000) Rapid DNA fingerprinting of pathogens by flow cytometry. Cytometry 41, 203–208.

    Article  PubMed  CAS  Google Scholar 

  28. Gilbert, R. L., Rider, J. R., Turton, J. R., and Pamphilon, D. H. (2003) Detection of residual donor leucocytes in leucoreduced red blood cell components using a fluorescence microplate assay. J. Immunol. Methods 274, 17–25.

    Article  PubMed  CAS  Google Scholar 

  29. Romppanen, E. L., Savolainen, K., and Mononen, I. (2000) Optimal use of the fluorescent PicoGreen dye for quantitative analysis of amplified polymerase chain reaction products on microplate. Anal. Biochem. 279, 111–114.

    Article  PubMed  CAS  Google Scholar 

  30. Gelmini, S., Caldini, A., Becherini, L., Capaccioli, S., Pazzagli, M., and Orlando, C. (1998) Rapid, quantitative nonisotopic assay for telomerase activity in human tumors. Clin. Chem. 44, 2133–2138.

    PubMed  CAS  Google Scholar 

  31. Elmendorff-Dreikorn, K., Chauvin, C., Slor, H., Kutzner, J., Batel, R., Muller, W. E., et al. (1999) Assessment of DNA damage and repair in human peripheral blood mononuclear cells using a novel DNA unwinding technique. Cell Mol. Biol. (Noisy-le-grand) 45, 211–218.

    CAS  Google Scholar 

  32. Choi, S. J. and Szoka, F C. (2000) Fluorometric determination of deoxyribonuclease I activity with PicoGreen. Anal. Biochem. 281, 95–97.

    Article  PubMed  CAS  Google Scholar 

  33. Chang, C. P., Chia, R. H., Wu, T. L., Tsao, K. C., Sun, C. F., and Wu, J. T. (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin. Chim. Acta 327, 95–101.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang, N., Reich, C. F., Monestier, M., and Pisetsky, D. S. (2003) The expression of plasma nucleosomes in mice undergoing in vivo apoptosis. Clin. Immunol. 106, 139–147.

    Article  PubMed  CAS  Google Scholar 

  35. Corsi, K., Chellat, F., Yahia, L., and Fernandes, J. C. (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24, 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  36. Murakami, P. and McCaman, M. T. (1999) Quantitation of adenovirus DNA and virus particles with the PicoGreen fluorescent dye. Anal. Biochem. 274, 283–288.

    Article  PubMed  CAS  Google Scholar 

  37. Li, C., Issa, R., Kumar, P., Hampson, I. N., Lopez-Novoa, J. M., Bernabeu, C., et al. (2003) CD105 prevents apoptosis in hypoxic endothelial cells. J. Cell Sci. 116, 2677–2685.

    Article  PubMed  CAS  Google Scholar 

  38. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., and van Oers, M. H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.

    PubMed  CAS  Google Scholar 

  39. Johnson-Wint, B. and Hollis, S. (1982) A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal. Biochem. 122, 338–344.

    Article  PubMed  CAS  Google Scholar 

  40. Karsten, U. and Wollenberger, A. (1977) Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. Anal. Biochem. 77, 464–470.

    Article  PubMed  CAS  Google Scholar 

  41. Otto, W. R., Barr, R. M., Dowd, P. M., Wright, N. A., and Greaves, M. W. (1989) 12-Hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) does not stimulate proliferation of human neonatal keratinocytes. J. Invest. Dermatol. 92, 683–688.

    Article  PubMed  CAS  Google Scholar 

  42. Latt, S. A. and Stetten, G. (1976) Spectral studies on 33258 Hoechst and related bisben-zimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 24, 24–33.

    PubMed  CAS  Google Scholar 

  43. Dover, R. (1992) Basic methods for assessing cellular proliferation, in Cell Proliferation in Clinical Practice (Hall, P. A., Levison, D. A., and Wright, N. A., eds.), Springer-Verlag, London.

    Google Scholar 

  44. Maurer, H. R. (1981). Potential pitfalls of [3H]thymidine techniques to measure cell proliferation. Cell Tissue Kinet. 14, 111–120.

    PubMed  CAS  Google Scholar 

  45. Wright, N. A. and Alison, M. (1984) The Biology of Epithelial Cell Populations, Vol. 1, Oxford University Press, Oxford, pp. 97–196 and 223–246.

    Google Scholar 

  46. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Vol. 3, 3 vols, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p. Appendix E5.

    Google Scholar 

  47. Burton, K. (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Otto, W.R. (2005). Fluorimetric DNA Assay of Cell Number. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology™, vol 289. Humana Press. https://doi.org/10.1385/1-59259-830-7:251

Download citation

  • DOI: https://doi.org/10.1385/1-59259-830-7:251

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-267-4

  • Online ISBN: 978-1-59259-830-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics