Skip to main content

In Vitro Fabrication of Engineered Human Skin

  • Protocol
Epidermal Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 289))

  • 1351 Accesses

Abstract

In vitro fabrication of human epidermal tissues that mimic the biochemical and morphologic properties of human skin, known as skin-equivalent (organotypic) cultures, has opened new avenues in the study of skin biology. In this chapter, methods for the generation of these tissues from their component parts are described. Conditions for culture of human keratinocytes and fibroblasts that allow optimal growth in skin equivalent cultures are delineated. These cell types are then sequentially combined so that keratinocytes are grown at an air-liquid interface on a contracted collagen gel containing dermal fibroblasts. The methods described enable the generation of human epidermal tissues that show in vivo-like tissue architecture and phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagios, C., Lochter, A., and Bissell, M. J. (1998) Tissue architecture: the ultimate regulator of epithelial function? Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 857–870.

    Article  CAS  Google Scholar 

  2. O’Brien, L. E., Zegers, M. M., and Mostov, K. E. (2002) Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537.

    Article  Google Scholar 

  3. Rheinwald, J. G. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343.

    Article  PubMed  CAS  Google Scholar 

  4. Andriani, F., Margulis, A., Lin, N., Griffey, S., and Garlick, J. A. (2003) Analysis of micro-environmental factors contributing to basement membrane assembly and normalized epidermal phenotype. J. Invest. Dermatol. 120, 923–931.

    Article  PubMed  CAS  Google Scholar 

  5. Garlick, J. A. and Taichman, L. B. (1994) Effect of TGF-β1 on re-epithelialization of human keratinocytes in vitro: an organotypic model. J. Invest. Dermatol. 103, 554–559.

    Article  PubMed  CAS  Google Scholar 

  6. Garlick, J. A. and Taichman, L. B. (1993) The fate of genetically marked human oral keratinocytes in vitro. Arch. Oral Biol. 38, 903–910.

    Article  PubMed  CAS  Google Scholar 

  7. Wainwright, D. J. (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21, 243–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Margulis, A., Zhang, W., Garlick, J.A. (2005). In Vitro Fabrication of Engineered Human Skin. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology™, vol 289. Humana Press. https://doi.org/10.1385/1-59259-830-7:061

Download citation

  • DOI: https://doi.org/10.1385/1-59259-830-7:061

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-267-4

  • Online ISBN: 978-1-59259-830-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics