Skip to main content

Experimental Models to Analyze Differentiation Functions of Cultured Keratinocytes In Vitro and In Vivo

  • Protocol
Epidermal Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 289))

  • 1373 Accesses

Abstract

In this chapter, we present technical details for the generation of in vitro skin equivalents consisting of collagen gels with incorporated fibroblasts covered by proliferating and differentiating keratinocytes. Epithelial-mesenchymal interactions are clearly manifest in these skin equivalents. Therefore, they have proven to be suitable experimental tools for a broad range of applications, e.g., for studies on the the paracrine regulation of keratinocyte differentiation and proliferation. On the other hand, in vivo assays cannot be abandoned totally, in particular, when such properties as malignant growth potential, disturbed differentiation control in carcinogenesis, and impact on angiogenesis are concerned. For that reason, we additionally describe xenotransplantation techniques to graft human keratinocytes and skin equivalents, respectively, onto the dorsal muscle fascia of thymus-aplastic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fusenig, N. E. (1994) Epithelial-mesenchymal interactions regulate keratinocyte growth and differentiation in vitro, in The Keratinocyte Handbook (Leigh, I., Lane, B., and Watt, F., eds.), Cambridge University Press, Cambridge, UK, pp. 71–94.

    Google Scholar 

  2. Stark, H. J., Baur, M., Breitkreutz, D., Mirancea, N., and Fusenig, N. E. (1999) Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J. Invest. Dermatol. 112, 681–691.

    Article  PubMed  CAS  Google Scholar 

  3. Maas-Szabowski, N. and Fusenig, N. E. (1996) Interleukin 1 induced growth factor expression in postmitotic and resting fibroblasts. J. Invest. Dermatol. 107, 849–855.

    Article  PubMed  CAS  Google Scholar 

  4. Maas-Szabowski, N., Stark, H. J., and Fusenig, N. E. (2000) Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced KGF expression in resting fibroblasts. J. Invest. Dermatol. 114, 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  5. Rheinwald, J. G. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344.

    Article  PubMed  CAS  Google Scholar 

  6. Garlick, J. A. and Taichman, L. B. (1994) Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab. Invest. 70(6), 916–924.

    PubMed  CAS  Google Scholar 

  7. Nuss Parker, J., Zhao, W., Askins, K. J., Broker, T. R., and Chow, L. T. (1997) Mutational analyses of differentiation-dependent human papillomavirus type 18 enhance elements in epithelial raft cultures of neonatal foreskin keratinocytes. Cell Growth Differ. 8, 751–762.

    Google Scholar 

  8. Ponec, M., Gibbs, S., Weerheim, A., Kempenaar, J., Mulder, A., and Mommaas, A. M. (1997) Epithelial growth factor and temperature regulate keratinocyte differentiation. Arch. Dermatol. Res. 289, 317–326.

    Article  PubMed  CAS  Google Scholar 

  9. Bajou, K., Noel, A., Gerard, R. D., Masson, V., Brunner, N., Holst-Hansen, C., et al. (1998) Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4(8), 923–928.

    Article  PubMed  CAS  Google Scholar 

  10. Fusenig, N. E., Breitkreutz, D., Dzarlieva, R. I., Boukamp, P., Bohnert, A., and Tilgen, W. (1983) Growth and differentiation of transformed keratinocytes from mouse and human skin in vitro and in vivo. J. Invest. Dermatol. 81, 168–175.

    Article  Google Scholar 

  11. Breitkreutz, D., Schoop, V. M., Mirancea, N., Baur, M., Stark, H. J., and Fusenig, N. E. (1998) Epidermal differentiation and basement membrane formation by HaCaT cells in surface transplants. Eur. J. Cell Biol. 75, 273–286.

    PubMed  CAS  Google Scholar 

  12. Skobe, M., Rockwell, P., Goldstein, N., Vosseler, S., and Fusenig, N. E. (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat. Med. 3, 1222–1227.

    Article  PubMed  CAS  Google Scholar 

  13. Madison, K. C., Swartzendruber, C. D., Wertz, P. W., and Downing, D. T. (1998) Lamellar granule extrusion and stratum corneum intercellular lamellae in murine keratinocyte cultures. J. Invest. Dermatol. 90, 110–116.

    Article  Google Scholar 

  14. Grinnell, F., Toda, K. I., and Lamke-Seymour, C. (1987) Reconstitution of human epidermis in vitro is accompanied by transient activation. Exp. Cell Res. 172, 439–449.

    Article  PubMed  CAS  Google Scholar 

  15. Herzhoff, K., Sollberg, S., Huerkamp, C., Krieg, T., and Eckes, B. (1999) Fibroblast expression of collagen integrin receptors alpha1beta1 and alpha2beta1 is not changed in systemic scleroderma. Br. J. Dermatol. 141, 218–223.

    Article  PubMed  CAS  Google Scholar 

  16. Bell, E., Ehrlich, H. P., Buttle, D. J., and Nakatsuji, T. (1981) Living tissue formed in vivo and accepted as skin-equivalent tissue of full thickness. Science 211, 1052–1054.

    Article  PubMed  CAS  Google Scholar 

  17. Mackenzie, I. C. and Fusenig, N. E. (1983) Regeneration of organized epithelial structure. J. Invest. Dermatol. 81, 189–194.

    Article  Google Scholar 

  18. Dawson, R. A., Goberdhan, N. J., Freedlander, E.,and MacNeil, S. (1996) Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model. Burns 22, 93–100.

    Article  PubMed  CAS  Google Scholar 

  19. Supp, D. M., Supp, A. P., Bell, S. M., and Boyce, S. T. (2000) Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor 1. J. Invest. Dermatol. 114, 5–13.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi, Y. and Nogawa, H. (1991) Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter. Development 111, 327–335.

    PubMed  CAS  Google Scholar 

  21. Zheng, J. and Vaheri, A. (1995) Human skin fibroblasts induce anchorage-independent growth of HPV-16-DNA-immortalized cervical epithelial cells. Int. J. Cancer 61, 658–665.

    Article  PubMed  CAS  Google Scholar 

  22. Coulomb, B., Dubertret, L., Merrill, C., Touraine, R., and Bell, E. (1984) The collagen lattice: A model for studying epidermalization in vitro. Br. J. Dermatol. 114, 91–101.

    Article  Google Scholar 

  23. Smola, H., Thiekötter, G., and Fusenig, N. E. (1993) Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J. Cell Biol. 122, 417–429.

    Article  PubMed  CAS  Google Scholar 

  24. Limat, A., Hunziker, T., Boillat, C., Bayreuther, K., and Noser, F. (1989) Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes. J. Invest. Dermatol. 92, 758–762.

    Article  PubMed  CAS  Google Scholar 

  25. Waelti, E. R., Inaebnit, S. P., Rast, H. P., Hunziker, T., Limat, A., Braathen, L., and Wiesmann, U. (1992) Coculture of human keratinocytes on post-mitotic human dermal fibroblast feeder cells: production of large amounts of interleukin 6. J. Invest. Dermatol. 98, 805–808.

    Article  PubMed  CAS  Google Scholar 

  26. Smola, H., Thiekötter, G., Baur, M., Stark, H. J., Breitkreutz, D., and Fusenig, N. E. (1994) Organotypic and epidermal-dermal co-cultures of normal human keratinocytes and dermal cells: regulation of transforming growth factor α, β1 and β2, mRNA levels. Toxicol. In Vitro 8, 641–650.

    Article  PubMed  CAS  Google Scholar 

  27. Bumann, J., Santo-Holtje, L., Loffler, H., Bamberg, M., and Rodemann, H. P. (1995) Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range. Strahlenther. Oncol. 171, 35–41.

    CAS  Google Scholar 

  28. Parenteau, N. L., Nolte, C. M., Bilbo, P., Rosenberg, M., Wilkins, L. M., Johnson E. W., et al. (1991) Epidermis generated in vitro: practical considerations and applications. J. Cell Biochem. 45, 245–251.

    Article  PubMed  CAS  Google Scholar 

  29. Smola, H., Stark, H. J., Thiekötter, G., Mirancea, N., Krieg, T., and Fusenig, N. E. (1998) Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp. Cell Res. 239, 399–410.

    Article  PubMed  CAS  Google Scholar 

  30. Maas-Szabowski, N., Stark, H. J., and Fusenig, N. E. (2002) Cell interaction and epithelial differentiation, in Culture of Epithelial Cells, 2nd ed. (Freshney, I. R., and Freshney, M. G., eds.), Wiley-Liss, Inc., New York, pp. 31–63.

    Chapter  Google Scholar 

  31. Gratzner, H. G. (1982) Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475.

    Article  PubMed  CAS  Google Scholar 

  32. Cattoretti, G., Becker, M. H., Key, G., Duchrow, M., Schluter, C., Galle, J., and Gerdes, J. (1992) Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J. Pathol. 168, 357–363.

    Article  PubMed  CAS  Google Scholar 

  33. Maas-Szabowski, N., Shimotoyodome, A., and Fusenig, N. E. (1999) Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J. Cell Sci. 112, 1843–1853.

    PubMed  Google Scholar 

  34. Szabowski, A., Maas-Szabowski, N., Andrecht, S., Kolbus, A., Schorpp-Kistner, M., Fusenig, N. E., et al. (2000) c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745–755.

    Article  PubMed  CAS  Google Scholar 

  35. Breitkreutz, D., Bohnert, A., Herzmann, E., Bowden, P. E., Boukamp, P., and Fusenig, N. E. (1984) Differentiation specific functions in cultured and transplanted mouse keratinocytes: Environmental influences on ultrastructure and keratin expression. Differentiation 26, 154–169.

    Article  PubMed  CAS  Google Scholar 

  36. Mackenzie, I., Rittman, G., Bohnert, A., Breitkreutz, D., and Fusenig, N. E. (1993) Influence of connective tissues on the in vitro growth and differentiation of murine epidermis. Epithelial Cell Biol. 2, 107–119.

    PubMed  CAS  Google Scholar 

  37. Kaur, P., and Carter, W. G. (1992) Integrin expression and differentiation in transformed human epidermal cells is regulated by fibroblasts. J. Cell Sci. 103, 755–763.

    PubMed  CAS  Google Scholar 

  38. Noser, F. K. and Limat, A. (1987) Organotypic culture of outer root sheath cells from human hair follicles using a new culture device. In Vitro Cell Devel. Biol. 23, 541–545.

    Article  CAS  Google Scholar 

  39. Detmar, M., Schaart, F. M., Blume, U., and Orfanos, C. E. (1993) Culture of hair matrix and follicular keratinocytes. J. Invest. Dermatol. 101, 130–134.

    Article  Google Scholar 

  40. Kopan, R. and Fuchs, E. (1989) The use of retinoic acid to probe the relation between hyperproliferation-associated keratins and cell proliferation in normal and malignant epidermal cells. J. Cell Biol. 109(1), 295–307.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, Y. Q., Mauviel, A., Ryynanen, J., Sollberg, S., and Uitto, J. (1994) Type VII collagen gene expression by human skin fibroblasts and keratinocytes in culture: influence of donor age and cytokine responses. J. Invest. Dermatol. 102, 205–209.

    Article  PubMed  CAS  Google Scholar 

  42. Gregoire, L., Munkareh, A., Rabah, R., Morris, R. T, and Lancaster, W. D. (1998) Organotypic culture of human ovarian surface epithelial cells: a potential model for ovarian carcinogenesis. In Vitro Cell Dev. Biol. Anim. 34, 636–639.

    Article  PubMed  CAS  Google Scholar 

  43. Tomakidi, P., Breitkreutz, D., Fusenig, N. E., Zoller, J., Kohl, A., and Komposch, G. (1998) Establishment of oral mucosa phenotype in vitro in correlation to epithelial anchorage. Cell Tissue Res. 298, 355–366.

    Article  Google Scholar 

  44. Schoop, V. M., Mirancea, N., and Fusenig, N. E. (1999) Epidermal organization and differentiation of HaCaT keratinocytes in organotypic cucultures with human dermal fibroblasts. J. Invest. Dermatol. 112, 343–353.

    Article  PubMed  CAS  Google Scholar 

  45. Maas-Szabowski, N., Starker, A., and Fusenig, N. E. (2003) Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J. Cell Sci. 116, 2937–2948.

    Article  PubMed  CAS  Google Scholar 

  46. Vaccariello, M., Javaherian, A., Wang, Y., Fusenig, N. E., and Garlick, J. A. (1999) Cell interactions control the fate of malignant keratinocytes in an organotypic model of early neoplasia. J. Invest. Dermatol. 113, 384–391.

    Article  PubMed  CAS  Google Scholar 

  47. Cerezo, A., Stark, H. J., Moshir, S., and Boukamp, P. (2003) Constitutive overexpression of human telomerase reverse transcriptase but not c-myc blocks terminal differentiation in human HaCaT skin keratinocytes. J. Invest. Dermatol. 121, 110–119.

    Article  PubMed  CAS  Google Scholar 

  48. Regnier, M., Staquet, M. J., Schmitt, D., and Schmidt, R. (1997) Integration of Langerhans cells into a pigmented reconstructed human epidermis. J. Invest. Dermatol. 109, 510–512.

    Article  PubMed  CAS  Google Scholar 

  49. Laning, J. C., DeLuca, J. E., and Hardin-Young, J. (1999) Effects of immunoregulatory cytokines on the immunogenic potential of the cellular components of a bilayered living skin equivalent. Tissue Eng. 5, 171–181.

    Article  PubMed  CAS  Google Scholar 

  50. Black, A. F, Berthold, F., L’Heureux, N., Germain, L., and Auger, F A. (1998) In vitro reconstruction of a capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12, 1311–1340.

    Google Scholar 

  51. Kopan, R., Traska, G., and Fuchs, E. (1987) Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol. 105, 427–440.

    Article  PubMed  CAS  Google Scholar 

  52. Chen, C. S. J., Lavker, R. M., Rodeck, U., Risse, B., and Jensen, P. (1995) Use of a serum-free epidermal culture model to show deleterious effects of epidermal growth factor on morphogenesis and differentiation. J. Invest. Dermatol. 104, 107–112.

    Article  PubMed  CAS  Google Scholar 

  53. Asselineau, D. and Prunieras, M. (1984) Reconstruction of simplified skin: control of fabrication. Br. J. Dermatol. 111, 219–222.

    Article  PubMed  Google Scholar 

  54. Mauch, C., Kozlowska, E., Eckes, B., and Krieg, T. (1992) Altered regulation of collagen metabolism in scleroderma fibroblasts growth within three-dimensional collagen gels. Exp. Dermatol. 1, 185–190.

    Article  PubMed  CAS  Google Scholar 

  55. Atula, S., Grenman, R., and Syrjänen, S. (1997) Fibroblasts can modulate the phenotype of malignant epithelial cells in vitro. Exp. Cell Res. 235, 180–187.

    Article  PubMed  CAS  Google Scholar 

  56. Fusenig, N. E., Skobe, M., Vosseler, S., Hansen, M., Lederle, W., Airola, K., et al. (2002) Tissue models to study tumor-stroma interactions, in Proteases and Their Inhibitors in Cancer Metastasis (Muschel, R. J. and Foidard, J. M., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–223.

    Google Scholar 

  57. Fusenig, N. E., Breitkreutz, D., Lueder, M., Boukamp, P., and Worst, P. K. M. (1981) Keratinization and structural organization in epidermal cell cultures, in International Cell Biology 1980–1981 (Schwaiger, H. G., ed.), Springer Verlag, Berlin, Germany, pp. 1004–1014.

    Google Scholar 

  58. Breitkreutz, D., Stark, H. J., Mirancea, N., Tomakidi, P., Steinbauer, H., and Fusenig, N. E. (1997) Integrin and basement membrane normalization in mouse grafts of human keratinocytes—implications for epithelial homeostasis. Differentiation 61, 195–209.

    Article  PubMed  CAS  Google Scholar 

  59. Meuth, M. and Green, H. (1974) Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell 2, 109–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Maas-Szabowski, N., Fusenig, N.E., Stark, HJ. (2005). Experimental Models to Analyze Differentiation Functions of Cultured Keratinocytes In Vitro and In Vivo. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology™, vol 289. Humana Press. https://doi.org/10.1385/1-59259-830-7:047

Download citation

  • DOI: https://doi.org/10.1385/1-59259-830-7:047

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-267-4

  • Online ISBN: 978-1-59259-830-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics