Cell Kinetic Analysis in Artificial Skin Using Immunochemical Methods

  • Andrea Casasco
  • Antonia Icaro Cornaglia
  • Federica Riva
  • Marco Casasco
  • Alberto Calligaro
Part of the Methods in Molecular Biology™ book series (MIMB, volume 289)

Abstract

Cell kinetic studies provide important information on histogenesis in vivo and in vitro. In this regard, specific antibodies to cell cycle-related antigens have been raised and characterized, thus permitting the study of cell kinetics using immunochemical methods. Recent advances in culture technology permitted the generation of human skin equivalents in vitro. We here provide detailed practical procedures for the study of epidermal cell kinetics in a model of artificial skin using immunohistochemistry and flow cytometry. The combined application of both techniques allows a precise detection of tissue growth sites and a quantitative assessment of cell growth. Moreover, simultaneous analysis of differentiation markers and proliferation antigens may be useful to understand molecular mechanisms that regulate tissue growth and development.

Key Words

Human artificial skin biotechnology cell cycle immunohistochemistry flow cytometry bromodeoxy-uridine proliferating cell nuclear antigen Ki-67 antigen cell cycle-related antigens epidermal stem cells 

References

  1. 1.
    Rheinwald, J. G. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–344.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell, E., Ehrlich, H. P., Buttle, D. J., and Nakatsuji, T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211, 1052–1054.PubMedCrossRefGoogle Scholar
  3. 3.
    Asselineau, D., Bernard, B. A., Bailly, C, and Darmon, M. (1986) Three-dimensional culture of human keratinocytes on a dermal equivalent as a model system to study environmental modulation of epidermal physiology in vitro: effect of air-exposure. Br. J. Dermatol. 31, 126–127.CrossRefGoogle Scholar
  4. 4.
    Parenteau, N. L., Nolte, C. M., Bilbo, P., Rosenberg, M., Wilkins, L. M., Johnson, E. W., et al. (1991) Epidermis generated in vitro: pratical considerations and applications. J. Cell Biochem. 45, 245–251.PubMedCrossRefGoogle Scholar
  5. 5.
    Parenteau, N. L., Bilbo, P., Nolte, C. J., Mason, V. S., and Rosenberg, M. (1992) The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology 9, 163–171.PubMedCrossRefGoogle Scholar
  6. 6.
    Zacchi, V., Soranzo, C, Cortivo, R., Radice, M., Brun, P., and Abatangelo, G. (1998) In vitro engineering of human skin-like tissue. J. Biomed. Mater. Res. 40, 187–194.PubMedCrossRefGoogle Scholar
  7. 7.
    Eaglstein, W. H. and Falanga, V. (1997) Tissue engineering and the development of Apligraf, a human skin equivalent. Clin. Therapeutics 19, 894–905.CrossRefGoogle Scholar
  8. 8.
    De Luca, M., Franzi, A. T., D’Anna, F., Zicca, A., Albanese, E., Bondanza, S., et al. (1988) Coculture of human keratinocytes and melanocytes: differentiated melanocytes are physiologically organized in the basal layer of the cultured epithelium. Eur. J. Cell Biol. 46, 176–180.PubMedGoogle Scholar
  9. 9.
    Regnier, M., Staquet, M. J., Schmitt, D., and Schmidt, R. (1997) Integration of Langerhans cells into a pigmented reconstructed human epidermis. J. Invest. Dermatol. 109, 510–512.PubMedCrossRefGoogle Scholar
  10. 10.
    Black, A. F., Berthod, F., L’Heureux, N., Germain, L., and Auger, F. A. (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12, 1331–1340.PubMedGoogle Scholar
  11. 11.
    Michel, M., L’Heureux, N., Pouliot, R., Xu, W., Auger, F. A., and Germain, L. (1999) Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev. Biol. Anim. 35, 318–326.CrossRefGoogle Scholar
  12. 12.
    Prosperi, E., Stivala, L. A., Scovassi, A. I., and Bianchi, L. (1997) Cyclins: relevance of subcellular localization in cell cycle control. Eur. J. Histochem. 41, 161–168.PubMedGoogle Scholar
  13. 13.
    Darzynkiewicz, Z., Gong, J., Juan, G, Ardelt, B., and Traganos, F. (1996) Cytometry of cyclin proteins. Cytometry 25, 1–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Casasco, A., Casasco, M., Icaro Cornaglia, A., Zerbinati, N., Mazzini, G, and Calligaro, A. (2001) Cell kinetics in a model of artificial skin. An immunohistochemical and flow cytometric analysis. Eur. J. Histochem. 45, 125–130.Google Scholar
  15. 15.
    Casasco, A., Casasco, M., Zerbinati, N., Icaro Cornaglia, A., and Calligaro, A. (2001) Cell proliferation and differentiation in a model of human skin equivalent. Anat. Rec. 264, 261–272.Google Scholar
  16. 16.
    Gratzner, H. G (1982) Monoclonal antibody to 5-bromo and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475.PubMedCrossRefGoogle Scholar
  17. 17.
    Gerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U., and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715.PubMedGoogle Scholar
  18. 18.
    De Fazio, A., Leary, J. A., Hedley, D. W., and Tattersall, M. H. N. (1987) Immunohistochemical detection of proliferating cells in vivo. J. Histochem. Cytochem. 35, 571–577.Google Scholar
  19. 19.
    McCormick, D., Chong, H., Datta, C, and Hall, P. A. (1993) Detection of the Ki-67 antigen in fixed and wax-embedded sections with the monoclonal antibody MIB1. Histopathology 22, 355–360.PubMedCrossRefGoogle Scholar
  20. 20.
    Casasco, A., Giordano, M., Danova, M., Casasco, M., Icaro Cornaglia, A., and Calligaro, A. (1993) PC10 monoclonal antibody to proliferating cell nuclear antigen as probe for cyclng cell detection in developing tissues. Histochemistry 99, 191–199.Google Scholar
  21. 21.
    Casasco, A., Casasco, M., and Calligaro, A. (1997) Microscopical immunodetection of cell proliferation antigens. Microsc. Anal. 48, 25–27.Google Scholar
  22. 22.
    Hsu, S. M., Raine, L., and Fanger, H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29, 577–580.PubMedGoogle Scholar
  23. 23.
    Polak, J. M. and Van Noorden, S. (1986) Immunocytochemistry, Modern Methods and Applications, 2nd ed., Butterworth Heinemann, Oxford (originally John Wright and Sons, Bristol), UK.Google Scholar
  24. 24.
    Shi, S. R., Key, M. E., and Kalra, K. L. (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue section. J. Histochem. Cytochem. 39, 741–748.PubMedGoogle Scholar
  25. 25.
    Polak, J. M. and Van Noorden, S. (1987) Specificity problems and essential controls, in An Introduction to Immunocytochemistry: Current Techniques and Problems (Hammond, C, ed.), Oxford University Press, Microscopical Society, Oxford, UK, pp. 33–36.Google Scholar
  26. 26.
    Mazzini, G. and Danova, M. (1994) Citometria a flusso. Applicazioni cliniche dell’analisi del DNA in oncologia. Ed. SSOSB-Scuola Internazionale di Oncologia e Medicina sperimentale, Genova, I.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Andrea Casasco
    • 1
  • Antonia Icaro Cornaglia
    • 1
  • Federica Riva
    • 1
  • Marco Casasco
    • 1
  • Alberto Calligaro
    • 1
  1. 1.Histology and Embryology Unit, Department of Experimental MedicineUniversity of PaviaPaviaItaly

Personalised recommendations