Skip to main content

Site-Specific Analysis of Histone Methylation and Acetylation

  • Protocol
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 287))

Abstract

Covalent modifications on the nucleosomal histones are essential in chromatin regulation and gene expression. Patterns of histone modifications may be somatically maintained and can thereby maintain locus-specific repression/activity in defined lineages or throughout development. During recent years, histone acetylation and methylation have emerged as key players in the repression or activation of genes and chromosomal domains. Histone methylation and acetylation patterns (and other histone modifications) can be analyzed by chromatin immunoprecipitation (ChIP). This chapter describes how ChIP can be performed on native chromatin prepared from cells and tissues, in order to analyze histone methylation and acetylation at specific sites in the genome. We also present different PCR-based assays that can be applied to analyze loci of interest in immunoprecipitated chromatin fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger, K. and Richmond, T. J. (1998) Histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146.

    Article  PubMed  CAS  Google Scholar 

  2. Hebbes, T. R., Clayton, A. L., Thorne, A. W., and Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase-I sensitivity in the chicken a-Globin chromosomal domain. EMBO J. 13, 1823–1830.

    PubMed  CAS  Google Scholar 

  3. O’Neill, L. P., and Turner, B. M. (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-independent manner. EMBO J. 14, 3946–3957.

    Google Scholar 

  4. Grunstein M. (1998). Inheritance by histones. Cell 93, 325–328.

    Article  PubMed  CAS  Google Scholar 

  5. Turner, B. M. (2000) Histone acetylation and an epigenetic code. Bioessays 22, 836–845.

    Article  PubMed  CAS  Google Scholar 

  6. Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  7. Kouzarides, T. (2002) Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12, 198–209.

    Article  PubMed  CAS  Google Scholar 

  8. Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D., and Felsenfeld, G. (2001) Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science 293, 2453–2455.

    Article  PubMed  CAS  Google Scholar 

  9. Noma, K-I., Allis, C. D., and Grewal, S. I. S. (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  10. Bernstein, B. E., Humphrey, E. L., Erlich, R. L., et al. (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700.

    Article  PubMed  CAS  Google Scholar 

  11. Fournier, C., Goto, Y., Ballestar, E., et al. (2002) Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J. 23, 6560–6570.

    Article  Google Scholar 

  12. Zegerman, P., Canas, B., Pappin, D., and Kouzarides, T. (2001) Histone H3 lysine 4 methylation disrupts the binding of the nucleosome remodelling and deacetylase (NuRD) repressor complex. j. Biol. Chem. 277, 11,624–11,624.

    Google Scholar 

  13. Peters, A. H., O’Carroll, D., Schertan, H., et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.

    Article  PubMed  CAS  Google Scholar 

  14. Silva, J., Mak, W., Zvetkova, I., et al. (2003) Establishment of histone H3 methylation on the inactive chromosome requires recruitment of Eed-Enx1 polycomb-group complexes. Dev. Cell 4, 481–495.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs, S. A., Taverna, S. D., Zhang, Y., et al. (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241.

    Article  PubMed  CAS  Google Scholar 

  16. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001) Methylation of histone H3 lysine-9 creates a binding site for HP1 protein. Nature 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  17. Cao, R., Wang, L., Wang, H., et al. (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  18. Orlando, V. (2003) Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606.

    Article  PubMed  CAS  Google Scholar 

  19. Maison, C, Bailly, D., Peters, A. H. F. M., et al. (2002) Higher-order structure of pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334.

    Article  PubMed  Google Scholar 

  20. Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D., and Spector, D. L. (2001) Methylation of histone H3 at lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738.

    Article  PubMed  CAS  Google Scholar 

  21. Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C, and Allis, C. D. (2002) Differentially methylated forms of histone H3 show unique association with inactive human X chromosomes. Nat. Genet. 30, 73–76.

    Article  PubMed  CAS  Google Scholar 

  22. Peters, A. H., Mermoud, J. E., O’Carroll, D., et al. (2002) Histone H3 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 30, 77–80.

    Article  PubMed  CAS  Google Scholar 

  23. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin-immunoprecipitation. Trends Biochem. Sci. 25, 99–104.

    Article  PubMed  CAS  Google Scholar 

  24. Hebbes, T. R., Thorne, A. W., and Crane-Robinson, C. (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1403.

    PubMed  CAS  Google Scholar 

  25. Gregory, R. I., Randall, T. E., Johnson, C. A., et al. (2001) DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2afl-rsl. Mol. Cell. Biol. 21, 5426–5436.

    Article  PubMed  CAS  Google Scholar 

  26. Drew, H. J. (1984) Structural specificities of five commonly used DNA nucleases. J. Mol. Biol. 176, 535–557.

    Article  PubMed  CAS  Google Scholar 

  27. Goto, Y., Gomez, M., Brockdorff, N., and Feil, R. (2003) Differential patterns of histone lysine methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet. Genome Res. 99, 66–74.

    Article  Google Scholar 

  28. Orita, M., Iwahana, H., Kanazawa, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.

    Article  PubMed  CAS  Google Scholar 

  29. Gregory, R. I. and Feil, R. (1999) Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity. Nucleic Acids Res. 27, e32i–iv.

    Article  Google Scholar 

  30. Uejima, H., Lee, M. P., Cui, H., and Feinberg, A. P. (2000) Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat. Genet. 25, 375–376.

    Article  PubMed  CAS  Google Scholar 

  31. Bonner, W. M., West, M. H., and Stedman, J. D. (1980) Two dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur. J. Biochem. 109, 17–23.

    Article  PubMed  CAS  Google Scholar 

  32. Sambrook, J. and Russell, D. W. (2001). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  33. Gregory, R. I., O’Neill, L. P., Randall, T. E., et al. (2002) Inhibition of histone deacetylases alters chromatin conformation at the imprinted mouse U2af1-rs1 locus in mouse embryonic stem cells. J. Biol. Chem. 277, 11,728–11,734.

    Article  PubMed  CAS  Google Scholar 

  34. Clayton, A. L., Rose, S., Barratt, M. J., and Mahadevan, L. C. (2000) Phosphoacetylation of histone H3 on c-fos and c-jun associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726.

    Article  PubMed  CAS  Google Scholar 

  35. Thomson, S., Clayton, A. L., and Mahadevan, L. C. (2001) Independent dynamic regulation of histone phosphorylation and acetylation during immediate-early gene induction. Mol. Cell 8, 1231–1241.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Umlauf, D., Goto, Y., Feil, R. (2004). Site-Specific Analysis of Histone Methylation and Acetylation. In: Tollefsbol, T.O. (eds) Epigenetics Protocols. Methods in Molecular Biology™, vol 287. Humana Press. https://doi.org/10.1385/1-59259-828-5:099

Download citation

  • DOI: https://doi.org/10.1385/1-59259-828-5:099

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-336-7

  • Online ISBN: 978-1-59259-828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics