Skip to main content

Restriction Endonuclease Accessibility as a Determinant of Altered Chromatin Structure

  • Protocol
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 287))

  • 2592 Accesses

Abstract

Active genes in eukaryotic genomes are typically found in open, nuclease-sensitive regions of chromatin. This chapter presents an overview of the techniques used to assay restriction endonuclease cleavage of chromosomal DNA as an approach to assess general accessibility at a genomic region of interest. We describe protocols to (1) prepare nuclei templates, (2) treat chromosomal DNA with a restriction enzyme(s), and (3) visualize and quantify chromosomal cleavage(s), with an emphasis on ligation-mediated (LM) PCR techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henikoff, S. (2003) Position effect variegation after 60 years. Trends Genet. 6, 422–426.

    Article  Google Scholar 

  2. Hendrich, B. D. and Willard, H. F. (1995) Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum. Mol. Genet. 4, 1765–1777.

    PubMed  CAS  Google Scholar 

  3. Jones, P. A. and Baylin, S. B. (2003) The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428.

    Article  Google Scholar 

  4. Felsenfeld, G. (1996) Chromatin unfolds. Cell 86, 13–19.

    Article  PubMed  CAS  Google Scholar 

  5. Loo, S. and Rine, J. (1994) Silencers and domains of generalized repression. Science 264, 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  6. Wallrath, L. L. and Elgin, S. C. R. (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9, 1263–1277.

    Article  PubMed  CAS  Google Scholar 

  7. Beato, M. and Eisfeld, K. (1997) Transcription factor access to chromatin. Nucleic Acids Res. 25, 3559–3563.

    Article  PubMed  CAS  Google Scholar 

  8. Aronow, B. J., Ebert, C. A., Valerius, M. T., et al. (1995) Dissecting a locus control region: facilitation of enhancer function by extended enhancer-flanking sequences. Mol. Cell. Biol. 15, 1123–1135.

    PubMed  CAS  Google Scholar 

  9. Gong, Q. H., McDowell, J. C, and Dean, A. (1996) Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the ε-globin gene in vivo by 5′ hypersensitive site 2 of the β-globin locus control region. Mol. Cell. Biol. 16, 6055–6064.

    PubMed  CAS  Google Scholar 

  10. Brown, S. A. and Kingston, R. E. (1997) Disruption of downstream chromatin directed by a transcriptional activator. Genes Dev. 11, 3116–3121.

    Article  PubMed  CAS  Google Scholar 

  11. Weinmann, A. S., Plevy, S. E., and Smale, S. T. (1999) Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 11, 665–675.

    Article  PubMed  CAS  Google Scholar 

  12. Rao, S., Procko, E., and Shannon, M. F. (2001) Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. J. Immunol. 167, 4494–4503.

    PubMed  CAS  Google Scholar 

  13. Carr, A. and Biggin, M. D. (2000) Accessibility of transcriptionally inactive genes is specifically reduced at homeoprotein-DNA binding sites in Drosophila. Nucleic Acids Res. 28, 2839–2846.

    Article  PubMed  CAS  Google Scholar 

  14. Mathieu, N., Hempel, W. M., Spicuglia, S., Verthuy, C, and Ferrier, P. (2000) Chromatin remodeling by the T cell receptor (TCR)-β gene enhancer during early T cell development: implications for the control of TCR-β locus recombination. J. Exp. Med. 192, 625–636.

    Article  PubMed  CAS  Google Scholar 

  15. Sikes, M. L., Meade, A., Tripathi, R., Krangel, M. S., and Oltz, E. M. (2002) Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc. Natl. Acad. Sci. USA 99, 12,309–12,314.

    Article  PubMed  CAS  Google Scholar 

  16. Chowdhury, D. and Sen, R. (2003) Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241.

    Article  PubMed  CAS  Google Scholar 

  17. Holloway, A. F., Rao, S., Chen, X., and Shannon, M. F. (2003) Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor κB proteins. J. Exp. Med. 197, 413–423.

    Article  PubMed  CAS  Google Scholar 

  18. Jackson, D. A., McDowell, J. C, and Dean, A. (2003) β-Globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res. 31, 1180–1190.

    Article  PubMed  CAS  Google Scholar 

  19. Mueller, P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  20. Garrity, P. A. and Wold, B. J. (1992) Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  21. Mathieu, N., Spicuglia, S., Gorbatch, S., et al. (2003) Assessing the role of the T cell receptor beta gene enhancer in regulating coding joint formation during V(D)J recombination. J. Biol. Chem. 278, 18,101–18,109.

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Zhu, C. and Roth, D. B. (1995) Characterization of coding ends in thymocytes of scid mice: implications for the mechanism of V(D)J recombination. Immunity 2, 101–112.

    Article  PubMed  CAS  Google Scholar 

  24. Zhu, C. M., Bogue, M. A., Lim, D. S., Hasty, P., and Roth, D. B. (1996) Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389.

    Article  PubMed  CAS  Google Scholar 

  25. Stanhope-Baker, P., Hudson, K. M., Shaffer, A. L., Constantinescu, A., and Schlissel, M. S. (1996) Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897.

    Article  PubMed  CAS  Google Scholar 

  26. McPherson, C. E., Shim, E.-Y., Friedman, D. S., and Zaret, K. S. (1993) An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell 75, 387–398.

    Article  PubMed  CAS  Google Scholar 

  27. Spicuglia, S., Payet, D., Tripathi, R. K., et al. (2000) TCRα enhancer activation occurs via a conformational change of a pre-assembled nucleo-protein complex. EMBO J. 19, 2034–2045.

    Article  PubMed  CAS  Google Scholar 

  28. Schlissel, M. S., Constantinescu, A., Morrow, T., Baxter, M., and Peng, A. (1993) Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7, 2520–2532.

    Article  PubMed  CAS  Google Scholar 

  29. Hempel, W. M., Stanhope-Baker, P., Mathieu, N., Huang, F., Schlissel, M. S., and Ferrier, P. (1998) Enhancer control of V(D)J recombination at the TCRβ locus: differential effects on DNA cleavage and joining. Genes Dev. 12, 2305–2317.

    Article  PubMed  CAS  Google Scholar 

  30. Papavasiliou, F. N. and Schatz, D. G. (2000) Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221.

    Article  PubMed  CAS  Google Scholar 

  31. Papavasiliou, F. N. and Schatz, D. G. (2002) The activation-induced deaminase functions in a postcleavage step of the somatic hypermutation process. J. Exp. Med. 195, 1193–1198.

    Article  PubMed  CAS  Google Scholar 

  32. Rao, S., Gerondakis, S., Woltring, D., and Shannon, M. F. (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J. Immunol. 170, 3724–3731.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hempel, W.M., Ferrier, P. (2004). Restriction Endonuclease Accessibility as a Determinant of Altered Chromatin Structure. In: Tollefsbol, T.O. (eds) Epigenetics Protocols. Methods in Molecular Biology™, vol 287. Humana Press. https://doi.org/10.1385/1-59259-828-5:053

Download citation

  • DOI: https://doi.org/10.1385/1-59259-828-5:053

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-336-7

  • Online ISBN: 978-1-59259-828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics