Skip to main content

Selectable Markers: Antibiotic and Herbicide Resistance

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 286))

Summary

The low efficiencies of most plant transformation methods necessitate the use of selectable marker genes to identify those cells that successfully integrate and express transferred DNA. Genes conferring resistance to various antibiotics or herbicides are commonly used in laboratory transformation research. They encode proteins that detoxify corresponding selection agents and allow the preferential growth of transformed cells. This chapter describes the application of two selection systems on the transformation of wheat. One is based on the nptII gene and corresponding aminoglycoside antibiotics, the other is based on the bar gene and corresponding glufosinate ammonium herbicides.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., and Puhler, A. (1988) Nucleotide-sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes-Tu494 and its expression in Nicotiana tabacum. Gene 70, 25–37.

    Article  CAS  PubMed  Google Scholar 

  2. Bevan, M. W., Flavell, R. B., and Chilton, M. D. (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304, 184–187.

    Article  CAS  Google Scholar 

  3. Barcelo, P. and Lazzeri, P. (1995) Transformation of cereals by microprojectile bombardment of immature inflorescence and scutellum tissues, in Methods in Molecular Biology: Plant Gene Transfer and Expression Protocols (Jones, H., ed.), Humana Press, Totowa, NJ, pp. 113–123.

    Chapter  Google Scholar 

  4. Barcelo, P., Rasco-Gaunt, S., Thorpe, C., and Lazzeri, P. A. (2001) Transformation and gene expression, in Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol. 34, Academic Press, London, UK, pp. 59–126.

    Google Scholar 

  5. Nehra, N. S., Chibbar, R. N., Leung, N., et al. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with 2 distinct gene constructs. Plant J. 5, 285–297.

    Article  CAS  Google Scholar 

  6. Pastori, G. M., Wilkinson, M. D., Steele, S. H., Sparks, C. A., Jones, H. D., and Parry, M. A. J. (2001) Age-dependent transformation frequency in elite wheat varieties. J. Exp. Bot. 52, 857–863.

    CAS  PubMed  Google Scholar 

  7. Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P., and Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. Exp. Bot. 52, 865–874.

    CAS  PubMed  Google Scholar 

  8. Rasco-Gaunt, S., Riley, A., Lazzeri, P., and Barcelo, P. (1999). A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol. Breed. 5, 255–262.

    Article  Google Scholar 

  9. Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5, 213–218.

    Article  CAS  Google Scholar 

  10. Vasil, V., Castillo, A. M., Fromm, M. E., and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10, 667–674.

    Article  CAS  Google Scholar 

  11. Müller, E., Lörz, H., and Lütticke, S. (1996) Variability of transgene expression in clonal cell lines of wheat. Plant Sci. 114, 71–82.

    Article  Google Scholar 

  12. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  13. Rasco-Gaunt, S., Riley, A., Barcelo, P., and Lazzeri, P. A. (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19, 118–127.

    Article  CAS  Google Scholar 

  14. Stacey, J. and Isaac, P. (1994) Isolation of DNA from plants, in Methods in Molecular Biology: Protocols for Nucleic Acid Analysis by Nonradioactive Probes, Vol. 28, (Isaac, P., ed.), Humana Press, Totowa, NJ, pp. 9–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Goodwin, J.L., Pastori, G.M., Davey, M.R., Jones, H.D. (2005). Selectable Markers: Antibiotic and Herbicide Resistance. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:191

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:191

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics