Skip to main content

Inducible Transgene Expression in Mouse Stem Cells

  • Protocol
  • 996 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 105))

Abstract

Embryonic stem (ES) cells serve as a potentially unlimited source of cells and tissues to treat a number of genetic and malignant diseases. The differentiation of these cells into specific cell types is an area of very active investigation. One method of manipulating ES cell differentiation is through the alteration of gene expression. There are a multitude of different methods for expressing a target gene in ES cells, but most are limited in their ability to provide spatial, temporal, and quantitative control of gene expression. These properties are important because many developmentally interesting genes are regulated in at least one of these ways. This chapter will address these limitations through the use of an ES cell line with a doxycycline-inducible transgene system. A characterization of this inducible transgene system will be discussed, as well as the use of this system to develop ES-derived long-term engrafting hematopoietic stem cells. This demonstration is one of many possible uses for this powerful and versatile system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Evans, M. J. and Kaufman, M. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  3. Robertson, E., Bradley, A., Kuehn, M., and Evans, M. (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448.

    Article  PubMed  CAS  Google Scholar 

  4. Kuehn, M. R., Bradley, A., Robertson, E. J., and Evans, M. J. (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298.

    Article  PubMed  CAS  Google Scholar 

  5. Cherry, S. R., Biniszkiewicz, D., van Parijs, L., Baltimore, D., and Jaenisch, R. (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell Biol. 20, 7419–7426.

    Article  PubMed  CAS  Google Scholar 

  6. Robbins, P. B., Yu, X. J., Skelton, D. M., Pepper, K. A., Wasserman, R. M., Zhu, L., et al. (1997) Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J. Virol. 71, 9466–9474.

    PubMed  CAS  Google Scholar 

  7. Hildinger, M., Eckert, H. G., Schilz, A. J., John, J., Ostertag, W., and Baum, C. (1998) FMEV vectors: both retroviral long terminal repeat and leader are important for high expression in transduced hematopoietic cells. Gene Ther. 5, 1575–1579.

    Article  PubMed  CAS  Google Scholar 

  8. Ketteler, R., Glaser, S., Sandra, O., Martens, U. M., and Klingmuller, U. (2002) Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther. 9, 477–487.

    Article  PubMed  CAS  Google Scholar 

  9. Hamaguchi, I., Woods, N. B., Panagopoulos, I., Andersson, E., Mikkola, H., Fahlman, C., et al. (2000) Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J. Virol. 74, 10,778–10,784.

    Article  PubMed  CAS  Google Scholar 

  10. Kafri, T., van Praag, H., Gage, F. H., and Verma, I. M. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521.

    Article  PubMed  CAS  Google Scholar 

  11. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2, 458–469.

    Article  PubMed  CAS  Google Scholar 

  12. Pfeifer, A., Ikawa, M., Dayn, Y., and Verma, I. M. (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. USA 99, 2140–2145.

    Article  PubMed  CAS  Google Scholar 

  13. Vigna, E., Cavalieri, S., Ailles, L., Geuna, M., Loew, R., Bujard, H., and Naldini, L. (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol. Ther. 5, 252–261.

    Article  PubMed  CAS  Google Scholar 

  14. Jin, L., Siritanaratkul, N., Emery, D. W., Richard, R. E., Kaushansky, K., Papayannopoulou, T., et al. (1998) Targeted expansion of genetically modified bone marrow cells. Proc. Natl. Acad. Sci. USA 95, 8093–8097.

    Article  PubMed  CAS  Google Scholar 

  15. Jin, L., Zeng, H., Chien, S., Otto, K. G., Richard, R. E., Emery, D. W., and Blau, C. A. (2000) In vivo selection using a cell-growth switch. Nat. Genet. 26, 64–66.

    Article  PubMed  CAS  Google Scholar 

  16. Hofmann, A., Nolan, G. P., and Blau, H. M. (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    Article  PubMed  CAS  Google Scholar 

  17. Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., et al. (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  19. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  20. Schwartzberg, P. L., Goff, S. P., and Robertson, E. J. (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803.

    Article  PubMed  CAS  Google Scholar 

  21. Hasty, P., Ramirez-Solis, R., Krumlauf, R., and Bradley, A. (1991) Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350, 243–246.

    Article  PubMed  CAS  Google Scholar 

  22. Valancius, V. and Smithies, O. (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell Biol. 11, 1402–1408.

    PubMed  CAS  Google Scholar 

  23. Rudolph, U., Brabet, P., Hasty, P., Bradley, A., and Birnbaumer, L. (1993) Disruption of the G(i2) alpha locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Res. 2, 345–355.

    Article  PubMed  CAS  Google Scholar 

  24. Askew, G. R., Doetschman, T., and Lingrel, J. B. (1993) Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol. Cell Biol. 13, 4115–4124.

    PubMed  CAS  Google Scholar 

  25. Stacey, A., Schnieke, A., McWhir, J., Cooper, J., Colman, A., and Melton, D. W. (1994) Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol. Cell Biol. 14, 1009–1116.

    PubMed  CAS  Google Scholar 

  26. Detloff, P. J., Lewis, J., John, S. W., Shehee, W. R., Langenbach, R., Maeda, N., and Smithies, O. (1994) Deletion and replacement of the mouse adult beta-globin genes by a “plug and socket” repeated targeting strategy. Mol. Cell Biol. 14, 6936–6943.

    PubMed  CAS  Google Scholar 

  27. Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392.

    Article  PubMed  CAS  Google Scholar 

  28. Hadjantonakis, A. K., Pirity, M., and Nagy, A. (1999) Cre recombinase mediated alterations of the mouse genome using embryonic stem cells. Methods Mol. Biol. 97, 101–122.

    PubMed  CAS  Google Scholar 

  29. Le, Y. and Sauer, B. (2000) Conditional gene knockout using cre recombinase. Methods Mol. Biol. 136, 477–485.

    PubMed  CAS  Google Scholar 

  30. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, Y., Riesterer, C., Ayrall, A. M., Sablitzky, F., Littlewood, T. D., and Reth, M. (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548.

    Article  PubMed  CAS  Google Scholar 

  32. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  33. Verrou, C., Zhang, Y., Zurn, C., Schamel, W. W., and Reth, M. (1999) Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. J. Biol. Chem. 380, 1435–1438.

    CAS  Google Scholar 

  34. Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327.

    Article  PubMed  CAS  Google Scholar 

  35. Chiba, H., Chambon, P., and Metzger, D. (2000) F9 embryonal carcinoma cells engineered for tamoxifen-dependent Cre-mediated site-directed mutagenesis and doxycycline-inducible gene expression. Exp. Cell Res. 260, 334–339.

    Article  PubMed  CAS  Google Scholar 

  36. Fuhrmann-Benzakein, E., Garcia-Gabay, I., Pepper, M. S., Vassalli, J. D., and Herrera, P. L. (2000) Inducible and irreversible control of gene expression using a single transgene. Nucleic Acids Res. 28, E99.

    Article  PubMed  CAS  Google Scholar 

  37. Imai, T., Jiang, M., Kastner, P., Chambon, P., and Metzger, D. (2001) Selective ablation of retinoid X receptor alpha in hepatocytes impairs their lifespan and regenerative capacity. Proc. Natl. Acad. Sci. USA 98, 4581–4586.

    Article  PubMed  CAS  Google Scholar 

  38. Imai, T., Jiang, M., Chambon, P., and Metzger, D. (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc. Natl. Acad. Sci. USA 98, 224–228.

    PubMed  CAS  Google Scholar 

  39. Endoh, M., Ogawa, M., Orkin, S., and Nishikawa, S.-I. (2002) SCL/tal-1-dependent process determines a competence to select the definitive hematopoietic lineage prior to endothelial differentiation. EMBO J. 21, 6700–6708.

    Article  PubMed  CAS  Google Scholar 

  40. Guo, C., Yang, W., and Lobe, C. G. (2002) A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18.

    Article  PubMed  CAS  Google Scholar 

  41. Hayashi, S., and McMahon, A. P. (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318.

    Article  PubMed  CAS  Google Scholar 

  42. Petrich, B. G., Molkentin, J. D., and Wang, Y. (2003) Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. FASEB J. 19, 19.

    Google Scholar 

  43. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  44. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  45. Baron, U., Gossen, M., and Bujard, H. (1997) Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729.

    Article  PubMed  CAS  Google Scholar 

  46. Niwa, H., Burdon, T., Chambers, I., and Smith, A. (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  47. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  48. Era, T. and Witte, O. N. (2000) Regulated expression of P210 Bcr-Abl during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate. Proc. Natl. Acad. Sci. USA 97, 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  49. Furth, P. A., St Onge, L., Boger, H., Gruss, P., Gossen, M., Kistner, A., Bujard, H., and Hennighausen, L. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  50. Bjornsson, J. M., Andersson, E., Lundstrom, P., Larsson, N., Xu, X., Repetowska, E., Humphries, R. K., et al. (2001) Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 98, 3301–3308.

    Article  PubMed  CAS  Google Scholar 

  51. Schonig, K., Schwenk, F., Rajewsky, K., and Bujard, H. (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res. 30, e134.

    Article  PubMed  Google Scholar 

  52. Moody, S. E., Sarkisian, C. J., Hahn, K. T., Gunther, E. J., Pickup, S., Dugan, K. D., et al. (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461.

    Article  PubMed  CAS  Google Scholar 

  53. Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., et al. (1995) Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 376, 62–66.

    Article  PubMed  CAS  Google Scholar 

  54. Shivdasani, R. A., Mayer, E. L., and Orkin, S. H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434.

    Article  PubMed  CAS  Google Scholar 

  55. Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F. W., and Orkin, S. H. (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57.

    Article  PubMed  CAS  Google Scholar 

  56. Shalaby, F., Ho, J., Stanford, W. L., Fischer, K.-D., Schuh, A. C., Schwartz, L., et al. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990.

    Article  PubMed  CAS  Google Scholar 

  57. North, T., Gu, T. L., Stacy, T., Wang, Q., Howard, L., Binder, M., et al. (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575.

    PubMed  CAS  Google Scholar 

  58. Mikkola, H. K. A., Klintman, J., Yang, H., Hock, H., Schlaeger, T. M., Fujiwara, Y., et al. (2003) Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547–551.

    Article  PubMed  CAS  Google Scholar 

  59. Cho, S. K., Bourdeau, A., Letarte, M., and Zuniga-Pflucker, J. C. (2001) Expression and function of CD105 during the onset of hematopoiesis from Flk1(+) precursors. Blood 98, 3635–3642.

    Article  PubMed  CAS  Google Scholar 

  60. Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., et al. (2002) Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100, 458–468.

    Article  PubMed  CAS  Google Scholar 

  61. Kyba, M., Perlingeiro, R. C., and Daley, G. Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37.

    Article  PubMed  CAS  Google Scholar 

  62. Sauvageau, G., Landsdorp, P. M., Eaves, C. J., Hogge, D. E., Dragowska, W. H., Reid, D. S., et al. (1994) Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acac. Sci. USA 91, 12,223–12,227.

    Article  CAS  Google Scholar 

  63. McGrath, K. E. and Palis, J. (1997) Expression of homeobox genes, including an insulin promoting factor, in the murine yolk sac at the time of hematopoietic initiation. Mol. Reprod. Dev. 48, 145–153.

    Article  PubMed  CAS  Google Scholar 

  64. Onishi, M., Nosaka, T., Misawa, K., Mui, A. L.-F., Gorman, D., McMahon, M., et al. (1998) Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell Biol. 18, 3871–3879.

    PubMed  CAS  Google Scholar 

  65. Moriggl, R., Topham, D. J., Teglund, S., Sexl, V., McKay, C., Wang, D., et al. (1999) Stat5 activation is uniquely associated with cytokine signaling in peripheral T cells. Immunity 10, 249–259.

    Article  PubMed  CAS  Google Scholar 

  66. Socolovsky, M., Fallon, A. E. J., Wang, S., Brugnara, C., and Lodish, H. F. (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191.

    Article  PubMed  CAS  Google Scholar 

  67. Schwaller, J., Parganas, E., Wang, D., Cain, D., Aster, J. C., Williams, I. R., et al. (2000) Stat5 is essential for the myelo-and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell 6, 693–704.

    Article  PubMed  CAS  Google Scholar 

  68. Bradley, H. L., Hawley, T. S., and Bunting, K. D. (2002) Cell intrinsic defects in cytokine responsiveness of STAT5-deficient hematopoietic stem cells. Blood 100, 3983–3989.

    Article  PubMed  CAS  Google Scholar 

  69. Bunting, K. D., Bradley, H. L., Hawley, T. S., Moriggi, R., Sorrentino, B. P., and Ihle, J. N. (2002) Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood 99, 479–487.

    Article  PubMed  CAS  Google Scholar 

  70. Snow, J. W., Abraham, N., Ma, M. C., Abbey, N. W., Herndier, B., and Goldsmith, M. A. (2002) STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood 99, 95–101.

    Article  PubMed  CAS  Google Scholar 

  71. Buitenhuis, M., Baltus, B., Lammers, J.-W. J., Coffer, P. J., and Koenderman, L. (2003) Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells. Blood 101, 134–142.

    Article  PubMed  CAS  Google Scholar 

  72. Carlesso, N., Frank, D. A., and Griffin, J. D. (1996) Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J. Exp. Med. 183, 811–820.

    Article  PubMed  CAS  Google Scholar 

  73. Frank, D. A. and Varticovski, L. (1996) BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10, 1724–1730.

    PubMed  CAS  Google Scholar 

  74. Ilaria, R. L. J. and Etten, R. A. V. (1996) P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol. Chem. 271, 31,704–31,710.

    Article  PubMed  CAS  Google Scholar 

  75. Shuai, K., Halpern, J., Hoeve, J. T., Rao, X., and Sawyers, C. L. (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254.

    PubMed  CAS  Google Scholar 

  76. Nieborowska-Skorska, M., Wasik, M. A., Slupianek, A., Salomoni, P., Kitamura, T., Calabretta, B., and Skorski, T. (1999) Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J. Exp. Med. 189, 1229–1242.

    Article  PubMed  CAS  Google Scholar 

  77. Hoover, R. R., Gerlach, M. J., Koh, E. Y., and Daley, G. Q. (2001) Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 20, 5826–5835.

    Article  PubMed  CAS  Google Scholar 

  78. Robb, L., Elwood, N. J., Elefanty, A. G., Kontgen, F., Li, R., Barnett, L. D., and Begley, C. G. (1996) The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15, 4123–4129.

    PubMed  CAS  Google Scholar 

  79. Drake, C. J., Brandt, S. J., Trusk, T. C., and Little, C. D. (1997) TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev. Biol. 192, 1–30.

    Article  Google Scholar 

  80. Elefanty, A. G., Begley, C. G., Metcalf, D., Barnett, L., Kontgen, F., and Robb, L. (1998) Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ “knock-in”. Proc. Natl. Acad. Sci. USA 95, 11,897–11,902.

    Article  PubMed  CAS  Google Scholar 

  81. Gering, M., Rodaway, A. R., Gottgens, B., Patient, R. K., and Green, A. R. (1998) The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17, 4029–4045.

    Article  PubMed  CAS  Google Scholar 

  82. Mead, P. E., Kelley, C. M., Hahn, P. S., Piedad, O., and Zon, L. I. (1998) SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 125, 2611–2620.

    PubMed  CAS  Google Scholar 

  83. Elefanty, A. G., Begley, C. G., Hartley, L., Papaevangeliou, B., and Robb, L. (1999) SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Blood 94, 3754–3763.

    PubMed  CAS  Google Scholar 

  84. Robertson, S. M., Kennedy, M., Shannon, J. M., and Keller, G. (2000) A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127, 2447–2459.

    PubMed  CAS  Google Scholar 

  85. Mead, P. E., Deconinck, A. E., Huber, T. L., Orkin, S. H., and Zon, L. I. (2001) Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 128, 2301–2308.

    PubMed  CAS  Google Scholar 

  86. Chung, Y. S., Zhang, W. J., Arentson, E., Kingsley, P. D., Palis, J., and Choi, K. (2002) Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 129, 5511–5520.

    Article  PubMed  CAS  Google Scholar 

  87. Ema, M., Faloon, P., Zhang, W. J., Hirashima, M., Reid, T., Stanford, W. L., et al. (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Development 17, 380–393.

    CAS  Google Scholar 

  88. Hall, M. A., Curtis, D. J., Metcalf, D., Elefanty, A. G., Sourris, K., L, L. R., Gothert, J. R., et al. (2003) The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc. Natl. Acad. Sci. USA 100, 992–997.

    Article  PubMed  CAS  Google Scholar 

  89. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  90. Wutz, A. and Jaenisch, R. (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705.

    Article  PubMed  CAS  Google Scholar 

  91. Wutz, A., Rasmussen, T. P., and Jaenisch, R. (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174.

    Article  PubMed  CAS  Google Scholar 

  92. Zambrowicz, B. P., Imamoto, A., Fiering, S., Herzenberg, L. A., Kerr, W. G., and Soriano, P. (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794.

    Article  PubMed  CAS  Google Scholar 

  93. Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606.

    Article  PubMed  CAS  Google Scholar 

  94. Kyba, M., Perlingeiro, R. C. R., and Daley, G. Q. (2003) Development of hematopoietic repopulating cells from embryonic stem cells, in Methods in Enzymology (Wassarman, P. M. and Keller, G. M., eds.), pp. 114–129.

    Google Scholar 

  95. Martin, G. R. and Evans, M. J. (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA 72, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  96. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  97. Schmidt, R. M., Bruyns, E., and Snodgrass, H. R. (1991) Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 718–740.

    Google Scholar 

  98. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and Characterization of Mouse Hematopoietic Stem Cells. Science 241, 58–62.

    Article  PubMed  CAS  Google Scholar 

  99. Uchida, N. and Weissman, I. L. (1992) Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin-Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184.

    Article  PubMed  CAS  Google Scholar 

  100. Jurecic, R., Van, N. T., and Belmont, J. W. (1993) Enrichment and functional characterization of Sca-1+WGA+, Lin-WGA+, Lin-Sca-1+, and Lin-Sca-1+WGA+ bone marrow cells from mice with an Ly-6a haplotype. Blood 82, 2673–2683.

    PubMed  CAS  Google Scholar 

  101. Uchida, N., Aguila, H. L., Fleming, W. H., Jerabek, L., and Weissman, I. L. (1994) Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ hematopoietic stem cells. Blood 83, 3758–3779.

    PubMed  CAS  Google Scholar 

  102. Morrison, S. J., Hemmati, H. D., Wandycz, A. M., and Weissman, I. L. (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acac. Sci. USA 92, 10,302–10,306.

    Article  CAS  Google Scholar 

  103. Osawa, M., Nakamura, K., Nishi, N., Takahasi, N., Tokuomoto, Y., Inoue, H., and Nakauchi, H. (1996) In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J. Immunol. 156, 3207–3214.

    PubMed  CAS  Google Scholar 

  104. Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E., and Weissman, I. L. (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939.

    PubMed  CAS  Google Scholar 

  105. Ma, X., Robin, C., Ottersbach, K., and Dzierzak, E. (2002) The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells. Stem Cells 20, 514–521.

    Article  PubMed  CAS  Google Scholar 

  106. Hanson, P., Mathews, V., Marrus, S. H., and Graubert, T. A. (2003) Enhanced green fluorescent protein targeted to the Sca-1 (Ly-6A) locus in transgenic mice results in efficient marking of hematopoietic stem cells in vivo. Exp. Hematol. 31, 159–167.

    Article  PubMed  CAS  Google Scholar 

  107. Ito, C. Y., Li, C. Y., Bernstein, A., Dick, J. E., and Stanford, W. L. (2003) Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 101, 517–523.

    Article  PubMed  CAS  Google Scholar 

  108. Mitjavila-Garcia, M. T., Cailleret, M., Godin, I., Nogueira, M. M., Cohen-Solal, K., Schiavon, V., et al. (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129, 2003–2013.

    PubMed  CAS  Google Scholar 

  109. Mikkola, H. K., Fujiwara, Y., Schlaeger, T. M., Traver, D., and Orkin, S. H. (2003) Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101, 508–516.

    Article  PubMed  CAS  Google Scholar 

  110. Shockett, P., Difilippantonio, M., Hellman, N., and Schatz, D. G. (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  111. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., and Hillen, W. (2000) Exploring the equence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968.

    Article  PubMed  CAS  Google Scholar 

  112. Akagi, K., Kanai, M., Saya, H., Kozu, T., and Berns, A. (2001) A novel tetracycline-dependent transactivator with E2F4 transcriptional activation domain. Nucleic Acids Res. 29, E23.

    Article  PubMed  CAS  Google Scholar 

  113. Chung, S., Andersson, T., Sonntag, K. C., Bjorklund, L., Isacson, O., and Kim, K. S. (2002) Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20, 139–145.

    Article  PubMed  CAS  Google Scholar 

  114. Baron, U., Schnappinger, D., Helbl, V., Gossen, M., Hillen, W., and Bujard, H. (1999) Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc. Natl. Acad. Sci. USA 96, 1013–1018.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ting, D.T., Kyba, M., Daley, G.Q. (2005). Inducible Transgene Expression in Mouse Stem Cells. In: Baron, M.H. (eds) Developmental Hematopoiesis. Methods in Molecular Medicine, vol 105. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-826-9:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-826-9:023

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-296-4

  • Online ISBN: 978-1-59259-826-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics