Reconstitution of Hematopoiesis Following Intrauterine Transplantation of Stem Cells

  • Elisabeth H. Javazon
  • Aziz M. Merchant
  • Enrico Danzer
  • Alan W. Flake
Part of the Methods in Molecular Medicine book series (MIMM, volume 105)


In utero hematopoietic stem cell transplantation is an entirely nonmyeloablative approach to achieve mixed hematopoietic chimerism and associated donor-specific tolerance. This chapter provides the rationale and methodologic detail for the administration of stem cells to the “preimmune” mouse fetus by a variety of routes. The development of murine model systems for in utero transplantation has accelerated progress in the field of in utero hematopoietic stem cell transplantation. Creative use of these models should also have experimental application to the fields of fetal gene therapy, stem cell biology, and developmental biology.

Key Words

In utero transplantation mouse fetal therapy bone marrow transplantation immunologic tolerance 


  1. 1.
    Flake, A. W. and Zanjani, E. D. (1999) In utero hematopoietic stem cell transplantation: Ontogenic opportunities and biologic barriers. Blood 94, 2179–2191.PubMedGoogle Scholar
  2. 2.
    Billingham, R., Brent, L., and Medawar, P. B. (1953) Actively acquired tolerance of foreign cells. Nature 172, 603–607.PubMedCrossRefGoogle Scholar
  3. 3.
    Sha, W. C. and Nelson, C. A. (1988) Positive and negative selection of an antigen receptor on T-cells in transgenic mice. Nature 336, 73–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz, R. (1989) Acquisition of Immunologic Self Tolerance. Cell 57, 1073–1081.PubMedCrossRefGoogle Scholar
  5. 5.
    Blackman, M., Kappler, J., and Marrack, P. (1990) The role of the T-cell receptor in positive and negative selection of developing T-cells. Science 248, 1335–1342.PubMedCrossRefGoogle Scholar
  6. 6.
    Flake, A. W., Harrison, M. R., Adzick, N. S., and Zanjani, E. D. (1986) Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 233, 776–778.PubMedCrossRefGoogle Scholar
  7. 7.
    Zanjani, E. D., Ascensao, J. L., Flake, A. W., Harrison, M. R., and Tavassoli, M. (1992) The fetus as an optimal donor and recipient of hemopoietic stem cells. Bone Marrow Transplant. 10(Suppl. 1), 107–114.PubMedGoogle Scholar
  8. 8.
    Zanjani, E. D., Flake, A. W., Rice, H., Hedrick, M., and Tavassoli, M. (1994) Long-term repopulating ability of xenogeneic transplanted human fetal liver hematopoietic stem cells in sheep. J. Clin. Invest. 93, 1051–1065.PubMedCrossRefGoogle Scholar
  9. 9.
    Zanjani, E. D., Pallavicini, M. G., Flake, A. W., Ascensao, J. L., Langlois, R. G., Reitsma, M., et al. (1992) Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero. J. Clin. Invest. 89, 1178–1188.PubMedCrossRefGoogle Scholar
  10. 10.
    Srour, E. F., Zanjani, E. D., Brandt, J. E., Leemhuis, T., Briddell, R. A., Heerema, N. A., et al. (1992) Sustained human hematopoiesis in sheep transplanted in utero during early gestation with fractionated adult human bone marrow cells. Blood 79, 1404–1412.PubMedGoogle Scholar
  11. 11.
    Civin, C. J., Lee, M. J., Hedrick, M., Rice, H., and Zanjani, E. D. (1993) Purified CD34+/lineage-/38-cells contain hematopoeitic stem cells. Blood 82(Suppl. 1), 180a (abstract 707).Google Scholar
  12. 12.
    Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Flake, A. W., and Ogawa, M. (1998) Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp. Hematol. 26, 353–360.PubMedGoogle Scholar
  13. 13.
    Almeida-Porada, G., Flake, A. W., Glimp, H. A., and Zanjani, E. D. (1999) Co-transplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cell in utero. Exp. Hematol. 27, 1569–1575.PubMedCrossRefGoogle Scholar
  14. 14.
    Carrier, E., Lee, T. H., Busch, M. P., and Cowan, M. J. (1995) Induction of tolerance in nondefective mice after in utero transplantation of major histocompatibility complex-mismatched fetal hematopoietic stem cells. Blood 86, 4681–4690.PubMedGoogle Scholar
  15. 15.
    Carrier, E., Gilpin, E., Lee, T. H., Busch, M. P., and Zanetti, M. (2000) Microchimerism does not induce tolerance after in utero transplantation and may lead to the development of alloreactivity. J. Lab. Clin. Med. 136, 224–235.PubMedCrossRefGoogle Scholar
  16. 16.
    Blazar, B. R., Taylor, P. A., and Vallera, D. A. (1995) Adult bone marrow-derived pluripotent hematopoietic stem cells are engraftable when transferred in utero into moderately anemic fetal recipients. Blood 85, 833–841.PubMedGoogle Scholar
  17. 17.
    Kim, H. B., Shaaban, A. F., Yang, E. Y., Liechty, K. W., and Flake, A. W. (1998) Microchimerism and tolerance after in utero bone marrow transplantation in mice. J. Surg. Res. 77, 1–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim, H. B., Shaaban, A. F., Milner, R., Fichter, C., and Flake, A. W. (1999) In utero bone marrow transplantation induces tolerance by a combination of clonal deletion and anergy. J. Pediatr. Surg. 34, 726–730.PubMedCrossRefGoogle Scholar
  19. 19.
    Pallavicini, M. G., Flake, A. W., Madden, D., Bethel, C., Duncan, B., Gonzalgo, M. L., et al. (1992) Hemopoietic chimerism in rodents transplanted in utero with fetal human hemopoietic cells. Transplant. Proc. 24, 542–543.PubMedGoogle Scholar
  20. 20.
    Shaaban, A. F., Kim, H. B., Milner, R., and Flake, A. W. (1999) A kinetic model for homing and migration of prenatally transplanted marrow. Blood 94, 3251–3257.PubMedGoogle Scholar
  21. 21.
    Hayashi, S., Peranteau, W. H., Shaaban, A. F., and Flake, A. W. (2002) Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion. Blood 100, 804–812.PubMedCrossRefGoogle Scholar
  22. 22.
    Peranteau, W. F., Hayashi, S., Hsieh, M., Shaaban, A. F., and Flake, A. W. (2002) High level allogeneic chimerism achieved by prenatal tolerance induction and postnatal nonmyeloablative bone marrow transplantation. Blood 100, 2225–2234.PubMedCrossRefGoogle Scholar
  23. 23.
    Flake, A., Roncarolo, M.-G., Puck, J., Almeida-Porada, G., Evans, M., Johnson, M., et al. (1996) Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N. Engl. J. Med. 335, 1806–1810.PubMedCrossRefGoogle Scholar
  24. 24.
    Wengler, G., Lanfranchi, A., Frusca, T., Verardi, R., Neva, A., Brugnoni, D., et al. (1996) In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet 348, 1484–1487.PubMedCrossRefGoogle Scholar
  25. 25.
    Westgren, M., Ringden, O., Bartmann, P., Bui, T. H., Lindton, B., Mattsson, J., et al. (2002) Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am. J. Obstet. Gynecol. 187, 475–482.PubMedCrossRefGoogle Scholar
  26. 26.
    Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., et al. (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6, 1282–1286.PubMedCrossRefGoogle Scholar
  27. 27.
    Milner, R., Shaaban, A., Kim, H. B., Fichter, C., and Flake, A. W. (1999) Postnatal booster injections increase engraftment after in utero stem cell transplantation. J. Surg. Res. 83, 44–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Bennett, M. (1987) Biology and genetics of hybrid resistance. Adv. Immunol. 41, 333–345.PubMedCrossRefGoogle Scholar
  29. 29.
    Daley, J. P. and Nakamura, I. (1984) Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts is a function of H-2/Hh-restricted effectors. J. Exp. Med. 159, 1132–1148.PubMedCrossRefGoogle Scholar
  30. 30.
    Hayashi, S., Abdulmalik, O., Peranteau, W. H., Ashizuka, S., Campagnoli, C., Chen, Q., et al. (2003) Mixed chimerism following in utero hematopoietic stem cell transplantation in murine models of hemoglobinopathy. Exp. Hematol. 31, 176–184.PubMedCrossRefGoogle Scholar
  31. 31.
    Fleischman, R. and Mintz, B. (1979) Prevention of genetic anemias in mice by microinjection of normal hematopoietic cells into the fetal placenta. Proc. Natl. Acad. Sci. USA 76, 5736–5740.PubMedCrossRefGoogle Scholar
  32. 32.
    Blazar, B. R., Taylor, P. A., and Vallera, D. A. (1995) In utero transfer of adult bone marrow cells into recipients with severe combined immunodeficiency disorder yields lymphoid progeny with T-and B-cell functional capabilities. Blood 86, 4353–4366.PubMedGoogle Scholar
  33. 33.
    Blazer, B. R., Taylor, P. A., McElmurry, R., Tian, L., Panoskaltsis-Mortari, A., Lam, S., et al. (1998) Engraftment of severe combined immune deficient mice receiving allogeneic bone marrow via in utero or postnatal transfer. Blood 92, 3949–3959.Google Scholar
  34. 34.
    Archer, D. R., Turner, C. W., Yeager, A. M., and Fleming, W. H. (1997) Sustained multilineage engraftment of allogeneic hematopoietic stem cells in NOD/SCID mice after in utero transplantation. Blood 90, 3222–3229.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Elisabeth H. Javazon
    • 1
  • Aziz M. Merchant
    • 1
  • Enrico Danzer
    • 1
  • Alan W. Flake
    • 1
  1. 1.Children’s Institute for Surgical ScienceChildren’s Hospital of PhiladelphiaPhiladelphia

Personalised recommendations