Skip to main content

Nonenzymatic Template-Directed RNA Synthesis

  • Protocol
  • 1930 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 288))

Abstract

The aim of this chapter is to provide reliable protocols for the study of nonenzymatic oligomerization reactions of ribonucleic acid and its analogs. Traditional radioactive labels are replaced by fluorescent dyes. Product analysis is either based on reversed-phase high-pressure (performance) liquid chromatography or on gel electrophoresis with on-line detection applying a deoxyribonucleic acid sequencer. Three examples of primer extensions are given, one of which demonstrates how the reaction of several primers may be monitored simultaneously.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gestland, R. F. and Atkins, J. F. (1993) The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Bartel, D. P. and Unrau, P. J. (1999) Constructing an RNA world. Trends Cell Biol. 9, M9–M13.

    Article  PubMed  CAS  Google Scholar 

  3. Joyce, G. F. (2002) The antiquity of RNA-based evolution. Nature 418, 214–221.

    Article  PubMed  CAS  Google Scholar 

  4. Cech, T. R. (1990) Self-cleaving and enzymic activity of an intervening RNA sequence from Tetrahymena. Angew. Chem. Int. Ed. Engl. 102, 745–755.

    CAS  Google Scholar 

  5. Altmann, S. (1990) Enzymic cleavage of RNA by RNA. Angew. Chem. Int. Ed. Engl. 102, 735–744.

    Google Scholar 

  6. Bartel, D. P., Doudna, J. A., Usman, N., and Szostak, J. W. (1991) Template-directed primer extension catalyzed by the Tetrahymena ribozyme. Mol. Cell. Biol. 11, 3390–3394.

    PubMed  CAS  Google Scholar 

  7. Doudna, J. A., Usman, N., and Szostak, J. W. (1993) Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA. Biochemistry 32, 2111–2115.

    Article  PubMed  CAS  Google Scholar 

  8. Hager, A. J., Pollard, J. D. J., and Szostak, J. W. (1996) Ribozymes: aiming at RNA replication and protein synthesis. Chem. Biol. 3, 717–725.

    Article  PubMed  CAS  Google Scholar 

  9. Unrau, P. J. and Bartel, D. P. (1998) RNA-catalysed nucleotide synthesis. Nature 395, 260–263.

    Article  PubMed  CAS  Google Scholar 

  10. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E., and Bartel, D. P. (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1324.

    Article  PubMed  CAS  Google Scholar 

  11. McGinness, K. E. and Joyce, G. F. (2003) In search of an RNA replicase ribozyme. Chem. Biol. 10, 5–14.

    Article  PubMed  CAS  Google Scholar 

  12. Reader, J. S. and Joyce, G. F. (2002) A ribozyme composed of only two different nucleotides. Nature 420, 841–844.

    Article  PubMed  CAS  Google Scholar 

  13. Rohategi, R., Bartel, D. P., and Szostak, J. W. (1996) Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118, 3332–3329.

    Article  Google Scholar 

  14. Rohategi, R., Bartel, D. P., and Szostak, J. W. (1996) Nonenzymatic, template directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′-5′ phosphodiester bonds. J. Am. Chem. Soc. 118, 3340–3344.

    Article  Google Scholar 

  15. Eschenmoser, A. and Dobler, M. (1992) Chemistry of-amino nitriles: 5. why pentose and not hexose nucleic acids? part I, introduction to the problem, conformational analysis of oligonucleotide single strands containing 2′,3′-dideoxyglucopyranosyl building blocks (homo-DNA), and reflections on the conformation of A-and B-DNA. Helv. Chim. Acta 75, 218–259.

    Article  CAS  Google Scholar 

  16. Eschenmoser, A. (1999) Chemical etiology of nucleic acid structure. Science 284, 2118–2124.

    Article  PubMed  CAS  Google Scholar 

  17. Pitsch, S., Wendeborn, S., Jaun, B., and Eschenmoser, A. (1993) Why pentose-and not hexose-nucleic acids? part VII, pyranosyl-RNA(‘p-RNA’). Helv. Chim. Acta 76, 2161–2183

    Article  CAS  Google Scholar 

  18. Pitsch, S., Krishnamurthy, R., Bolli, M., et al. (1995) Pyranosyl-RNA (p-RNA): base pairing selectivity and potential to replicate. Helv. Chim. Acta 78, 1621–1635.

    Article  CAS  Google Scholar 

  19. Bolli, M., Micura, R., Pitsch, S., and Eschenmoser, A. (1997) Pyranosyl-RNA: further observations on replication: part 5. Helv. Chim. Acta 80, 1901–1951.

    Article  CAS  Google Scholar 

  20. Bolli, M., Micura, R., and Eschenmoser, A. (1997) Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide 2′,3′-cyclophosphate. Chem. Biol. 4, 309–321.

    Article  PubMed  CAS  Google Scholar 

  21. Schöing, K.-U., Scholz, P., Wu, X., et al. (2002) The α-L-threofuranosyl-(3′-2′)-oligonucleotide system (TNA’): synthesis and pairing properties. Helv. Chim. Acta 85, 4111–4153

    Article  Google Scholar 

  22. Wu, X., Delgado, G., Krishnamurthy, R., and Eschenmoser, A. (2002) 2,6-Diaminopurine in TNA: effect on duplex stabilities and on the efficiency of template-controlled ligations. Org. Lett. 4, 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  23. von Kiedrowski, G. (1986) A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–934.

    Article  Google Scholar 

  24. von Kiedrowski, G., Helbing, J., Wlotzka, B., et al. (1992) Parabolic reproduction and the origin of replication. Nachr. Chem. Tech. Lab. 40, 478–588.

    Google Scholar 

  25. Schöeborn, H., Bülle, J., and von Kiedrowski, G. (2001) Kinetic monitoring of self-replicating systems through measurement of fluorescence resonance energy transfer. Chembiochem 12, 922–927.

    Article  Google Scholar 

  26. Müller, D., Pitsch, S., Kittaka, A., Wagner, E., and Eschenmoser, A. (1990) Chemistry of α-aminonitriles: Aldomerization of glycolaldehyde phosphate to rac-hexose 2,4,6-triphosphates and (in presence of formaldehyde) rac-pentose 2,4-diphosphates: rac-allose 2,4,6-triphosphate and rac-ribose 2,4-diphosphate are the main reaction products. Helv. Chim. Acta 73, 1410–1468.

    Article  Google Scholar 

  27. Kozlov, I. A. and Orgel, L. E. (2000) Nonenzymatic template directed synthesis of RNA from monomers. Mol. Biol. 34, 781–789.

    Article  CAS  Google Scholar 

  28. Wu, T. and Orgel, L. E. (1992) Nonenzymatic template-directed synthesis on oligodeoxycytidylate sequences in hairpin oligonucleotides. J. Am. Chem. Soc. 114, 317–322.

    Article  PubMed  CAS  Google Scholar 

  29. Kurz, M., Göel, K., Hartel, C., and Göel, M. W. (1997) Nonenzymatic oligomerization of ribonucleotides on guanosine-rich templates: supression of the self pairing of guanosine. Angew. Chem Int. Ed. Engl. 36, 842–845

    Article  CAS  Google Scholar 

  30. Kurz, M., Göel, K., Hartel, C., and Göel, M. W. (1998) Acridine-labeled primers as tools for the study of nonenzymatic RNA oligomerization. Helv. Chim. Acta 81, 1156–1180.

    Article  CAS  Google Scholar 

  31. Kozlov, I. A. and Orgel, L. E. (1999) Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues. Helv. Chim. Acta 82, 1799–1805.

    Article  PubMed  CAS  Google Scholar 

  32. Hartel, C. and Göel, M. W. (2000) Substitution of adenine by purine-2,6-diamin improves the nonenzymatic oligomerization of ribonucleotides on templates containing thymidine. Helv. Chim. Acta 83, 2541–2549.

    Article  CAS  Google Scholar 

  33. Hey, M., Hartel, C., and Göel, M. W. (2003) Nonenzymatic oligomerization of ribonucleotides: toward in vitro selection experiments. Helv. Chim. Acta 86, 844–854.

    Article  CAS  Google Scholar 

  34. Schmidt, J. G., Nielsen, P. E., and Orgel, L. E. (1997) Information transfer from peptide nucleic acids to RNA by template directed syntheses. Nucl. Acids Res. 25, 4797–4802.

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt, J. G., Christensen, L., Nielsen, P. E., and Orgel, L. E. (1997) Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucl. Acids Res. 25, 4792–4796.

    Article  PubMed  CAS  Google Scholar 

  36. Van Aerschot, A., Verheggen, I., Hendrix, C., and Herdewijn, P. (1995) 1,5-Anhydrohexitol nucleic acids, a new promising antisense construct. Angew. Chem. Int. Ed. Engl. 34, 1338–1339.

    Article  Google Scholar 

  37. Hendrix, C., Rosenmeyer, H., de Bouvere, B., van Aerschot, A., Seela, F., and Herdewijn, P. (1997) 1′,5′-Anhydrohexitol oligonucleotides: hybridization and strand displacement with oligoribonucleotides, interaction with RNase H and HIV reverse transcriptase. Chem. Eur. J. 3, 1513–1520.

    Article  CAS  Google Scholar 

  38. Allart, B., Khan, K., Rosemeyer, H., et al. (1999) D-altritol nucleic acids (ANA): hybridisation properties, stability, and initial structural Analysis. Chem. Eur. J. 5, 2424–2431.

    Article  CAS  Google Scholar 

  39. Winter, H. D., Lescrinier, E., Aerschot, A. V., and Herdewijn, P. (1998) Molecular dynamics simulation to investigate differences in minor groove hydration of HNA/RNA hybrids as compared to HNA/DNA complexes. J. Am. Chem. Soc. 120, 5381–5394.

    Article  Google Scholar 

  40. Kozlov, I. A., Politis, P. K., van Aerschot, A., Busson, R., Herdewijn, P., and Orgel, L. E. (1999) Nonenzymatic synthesis of RNA oligomers on hexitol nucleic acids templates: the importance of the A structure. J. Am. Chem. Soc. 121, 2653–2655.

    Article  PubMed  CAS  Google Scholar 

  41. Kozlov, I. A., de Bouvere, B., van Aerschot, A., Herdewijn, P., and Orgel, L. E. (1999) Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization. J. Am. Chem. Soc. 121, 5856–5859.

    Article  PubMed  CAS  Google Scholar 

  42. Kozlov, I. A., Zielinski, M., Allart, B., et al. (2000) Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogs of oligonucleotides. Chem. Eur. J. 6, 151–155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Hey, M., Göel, M. (2005). Nonenzymatic Template-Directed RNA Synthesis. In: Herdewijn, P. (eds) Oligonucleotide Synthesis. Methods in Molecular Biology, vol 288. Humana Press. https://doi.org/10.1385/1-59259-823-4:305

Download citation

  • DOI: https://doi.org/10.1385/1-59259-823-4:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-233-9

  • Online ISBN: 978-1-59259-823-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics