Advertisement

Base-Modified Oligonucleotides With Increased Duplex Stability

Pyrazolo[3,4-d] Pyrimidines Replacing Purines
  • Frank Seela
  • Yang He
  • Junlin He
  • Georg Becher
  • Rita Kröschel
  • Matthias Zulauf
  • Peter Leonard
Part of the Methods in Molecular Biology book series (MIMB, volume 288)

Abstract

Oligonucleotides incorporating 8-aza-7-dazapurines (pyrazolo[3,4-d]pyrimidines) were synthesized. The corresponding nucleosides were prepared and were converted into phosphoramidites. The oligonucleotide duplex stability was studied and was compared to that of the parent compounds containing the canonical purine nucleosides. The presence of 7-halogeno or 7-alkynyl substituents increases the duplex stability significantly.

Key Words

Nucleosides phosphoramidites oligonucleotides glycosylation solid-phase synthesis base modification pyrazolo[3,4-d]pyrimidines 8-aza-7-deazapurines base pair stability Tm values hybridization harmonization of base pair stability 

References

  1. 1.
    Suhadolnik, R. J. (1970) Nucleoside Antibiotics. Wiley, New York.Google Scholar
  2. 2.
    Rozenski, J., Crain, P. F., and McCloskey, J. A. (1999) The RNA Modification Database: 1999 update. Nucleic Acids Res. 27, 196, 197.PubMedCrossRefGoogle Scholar
  3. 3.
    Warren, R. A. J. (1980) Modified bases in bacteriophage DNAs. Annu. Rev. Microbiol. 34, 137–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Martin, J. C. (1989) Nucleotide Analogues as Antiviral Agents. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  5. 5.
    Simons, C. (2001) Nucleoside Mimetics: Their Chemistry and Biological Properties. Gordon and Breach, Amsterdam.Google Scholar
  6. 6.
    Ramzaeva, N., Rosemeyer, H., Leonard, P., et al. (2000) Oligonucleotides functionalized by fluorescein and rhodamine dyes: Michael addition of methyl acrylate to 2′-deoxypseudouridine. Helv. Chim. Acta 83, 1108–1126.CrossRefGoogle Scholar
  7. 7.
    Prober, J. M., Trainor, G. L., Dam, R. J., et al. (1987) A system for rapid DNA sequencing using fluorescent chain-terminating dideoxynucleotides. Science 238, 336–341.PubMedCrossRefGoogle Scholar
  8. 8.
    Mizusawa, S., Nishimura, S., and Seela, F. (1986) Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 14, 1319–1324.PubMedCrossRefGoogle Scholar
  9. 9.
    Seela, F. (2002) Base-modified nucleosides and oligonucleotides: synthesis and application. Collection Symposium Series 5, 1–15.Google Scholar
  10. 10.
    Kool, E. T. (2002) Replacing the nucleobases in DNA with designer molecules. Acc. Chem. Res. 35, 936–943.PubMedCrossRefGoogle Scholar
  11. 11.
    Chadwick, D. J. and Cardew, G. (1997) Oligonucleotides as Therapeutic Agents. Wiley, Chichester, UK.CrossRefGoogle Scholar
  12. 12.
    Uhlmann, E. and Peyman, A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem. Rev. 90, 543–584.CrossRefGoogle Scholar
  13. 13.
    Ross, J. (1997) Nucleic Acid Hybridization: Essential Techniques. Wiley, New York.Google Scholar
  14. 14.
    Seela, F. and Wei, C. (1997) Oligonucleotides containing consecutive 2′-deoxyisoguanosine residues: synthesis, duplexes with parallel chain orientation, and aggregation. Helv. Chim. Acta 80, 73–85.CrossRefGoogle Scholar
  15. 15.
    Schena, M. (2003) Microarray Analysis. Wiley, Hoboken, NJ.Google Scholar
  16. 16.
    Forman, J. E., Walton, I. D., Stern, D., Rava, R. P., and Trulson, M. O. (1998) Thermodynamics of duplex formation and mismatch discrimination on photolithographically synthesized oligonucleotide arrays. J. Am. Chem. Soc. 120, 206–228.Google Scholar
  17. 17.
    Seela, F., Wei C., Melenewski, A., and Feiling, E. (1998) Parallel-stranded duplex DNA and self-assembled quartet structures formed by isoguanine and related bases. Nucleosides & Nucleotides 17, 2045–2052.CrossRefGoogle Scholar
  18. 18.
    Seela, F. and Kröschel, R. (2001) Quadruplex and pentaplex self-assemblies of oligonucleotides containing short runs of 8-aza-7-deaza-2′-deoxyisoguanosine or 2′-deoxyisoguanosine. Bioconjugate Chem. 12, 1043–1050.CrossRefGoogle Scholar
  19. 19.
    Seela, F., Wiglenda, T., Rosemeyer, H., Eickmeier, H., and Reuter, H. (2002) 7-Deaza-2′-deoxyxanthosine dihydrate forms water-filled nanotubes with C-H(((O hydrogen bonds. Angew. Chem. Int. Ed. Engl. 41, 603–605.CrossRefGoogle Scholar
  20. 20.
    Freier, S. M. and Altmann K.-H. (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res. 25, 4429–4443.PubMedCrossRefGoogle Scholar
  21. 21.
    Sági, J., Szemzö, A., Ébinger, K., et al. (1993) Base-modified oligodeoxynucleotides. I. Effect of 5-5-alkyl, 5-(1-alkenyl) and 5-(1-alkynyl) substitution of the pyrimidines on duplex stability and hydrophobicity. Tetrahedron Lett. 34, 2191–2194CrossRefGoogle Scholar
  22. 22.
    Barnes, T. W., III, and Turner, D. H. (2001) Long-range cooperativity in molecular recognition of RNA by oligodeoxynucleotides with multiple C5-(1-propynyl) pyrimidines. J. Am. Chem. Soc. 123, 4107–4118.PubMedCrossRefGoogle Scholar
  23. 23.
    Barnes, T. W., III, and Turner, D. H. (2001) C5-(1-propynyl)-2′-deoxy-pyrimidines enhance mismatch penalties of DNA:RNA duplex formation. Biochemistry 40, 12,738–12,745.PubMedCrossRefGoogle Scholar
  24. 24.
    Wagner, R. W., Matteucci, M. D., Lewis, J. G., Gutierrez, A. J., Moulds, C., and Froehler, B. C. (1993) Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 260, 1510–1513.PubMedCrossRefGoogle Scholar
  25. 25.
    Froehler, B. C., Wadwani, S., Terhorst, T. J., and Gerrard, S. R. (1992) Oligodeoxynucleotides containing C-5 propyne analogs of 2′-deoxyuridine and 2′-deoxycytidine. Tetrahedron Lett. 33, 5307–5310.CrossRefGoogle Scholar
  26. 26.
    Gutierrez, A. J., Matteucci, M. D., Grant, D., Matsumura, S., Wagner, R. W., and Froehler, B. C. (1997) Antisense gene inhibition by C-5-substituted deoxyuridine-containing oligodeoxynucleotides. Biochemistry 36, 743–748.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmadian, M., Zhang, P., and Bergstrom, D. E. (1998) A comparative study of the thermal stability of oligodeoxyribonucleotides containing 5-substituted 2′-deoxyuridines. Nucleic Acids Res. 26, 3127–3135.PubMedCrossRefGoogle Scholar
  28. 28.
    Graham, D., Parkinson, J. A., and Brown, T. (1998) DNA duplexes stabilized by modified monomer residues: synthesis and stability. J. Chem. Soc., Perkin Trans. 1, 1131–1138.CrossRefGoogle Scholar
  29. 29.
    Armitage B. A. (2003) The impact of nucleic acid secondary structure on PNA hybridization. Drug Discov. Today 8, 222–228.PubMedCrossRefGoogle Scholar
  30. 30.
    Nielsen, P. E., Egholm, M., Berg, R. H., and Buchardt, O. (1991) Sequence-selective recognition of DNA by strand displacement with thymine-substituted polyamide. Science 254, 1498–1500.CrossRefGoogle Scholar
  31. 31.
    Nielsen P. E. and Haaima, G. (1997) Peptide nucleic acid (PNA): a DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 26, 73–78.CrossRefGoogle Scholar
  32. 32.
    Uhlmann, E., Peyman, A., Breipohl, G., and Will, D. W. (1998) PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew. Chem. Int. Ed. Engl. 37, 2796–2823.CrossRefGoogle Scholar
  33. 33.
    Petersen, M. and Wengel, J. (2003) LNA: a versatile tool for therapeutics and genomics. J. Trends Biotechnol. 21, 74–81.CrossRefGoogle Scholar
  34. 34.
    Seela, F. and Thomas, H. (1995) Duplex stabilization of DNA: oligonucleotides containing 7-substituted 7-deazaadenines. Helv. Chim. Acta 78, 94–108.CrossRefGoogle Scholar
  35. 35.
    Ramzaeva, N. and Seela, F. (1996) Duplex stability of 7-deazapurine DNA: oligonucleotides containing 7-bromo-or 7-iodo-7-deazaguanine. Helv. Chim. Acta 79, 1549–1558.CrossRefGoogle Scholar
  36. 36.
    Seela, F. and Chen, Y. (1996) Oligonucleotides containing 7-or 8-methyl-7-deazaguanine: steric requirements of major groove substituents on the DNA structure. Chem. Commun. 2263, 2264.Google Scholar
  37. 37.
    Seela, F. and Becher, G. (1998) Stabilisation of duplex DNA by 7-halogenated 8-aza-7-deazaguanines. Chem. Commun. 2017, 2018.Google Scholar
  38. 38.
    Seela, F. and Becher, G. (1999) Oligonucleotides containing pyrazolo(3,4-d]pyrimidines: the influence of 7-substituted 8-aza-7-deaza-2′-deoxyguanosines on the duplex structure and stability. Helv. Chim. Acta 82, 1640–1655.CrossRefGoogle Scholar
  39. 39.
    Seela, F. and Becher, G. (2001) Pyrazolo[3,4-d]pyrimidine nucleic acids: adjustment of dA-dT to dG-dC base pair stability. Nucleic Acids Res. 29, 2069–2078.PubMedCrossRefGoogle Scholar
  40. 40.
    Seela, F. and Kaiser, K. (1988) 8-Aza-7-deazaadenine N8-and N9-(β-D-2′-deoxyribofuranosides): building blocks for automated DNA synthesis and properties of oligodeoxyribonucleotides. Helv. Chim. Acta 71, 1813–1823.CrossRefGoogle Scholar
  41. 41.
    Seela, F., Becher, G., and Zulauf, M. (1999) 8-Aza-7-deazapurine DNA: synthesis and duplex stability of oligonucleotides containing 7-substituted bases. Nucleosides Nucleotides 18, 1399, 1400.CrossRefGoogle Scholar
  42. 42.
    Seela, F. and Becher, G. (2000) Synthesis, base pairing, and fluorescence properties of oligonucleotides containing 1H-pyrazolo[3,4-d]pyrimidin-6-amine (8-Aza-7-deazapurin-2-amine) as an analogue of purin-2-amine. Helv. Chim. Acta 83, 928–942.CrossRefGoogle Scholar
  43. 43.
    Sun, L. (2002) Pronucleotides and oligonucleotides of 7-halogenated 8-aza-7-deazaadenine 2′-deoxy-β-D-ribonucleosides. Diploma work, University of Osnabrueck.Google Scholar
  44. 44.
    Seela. F., Ramzaeva, N., and Zulauf M. (1997) Duplex stability of oligonucleotides containing 7-substituted 7-deaza-and 8-aza-7-deazapurine nucleosides. Nucleosides Nucleotides 16, 963–966.CrossRefGoogle Scholar
  45. 45.
    He, J. and Seela, F. (2002) Propynyl groups in duplex DNA: stability of base pairs incorporating 7-substituted 8-aza-7-deazapurines or 5-substituted pyrimidines. Nucleic Acids Res. 30, 5485–5496.PubMedCrossRefGoogle Scholar
  46. 46.
    Seela, F. and Driller, H. (1988) 8-Aza-7-deaza-2′-deoxyguanosine: phosphoramidite synthesis and properties of octanucleotides. Helv. Chim. Acta 71, 1191–1198.CrossRefGoogle Scholar
  47. 47.
    Seela, F. and Driller, H. (1989) Alternating d(G-C)3 and d(C-G)3 hexanucleotides containing 7-deaza-2′-deoxyguanosine or 8-aza-7-deaza-2′-deoxyguanosine in place of dG. Nucleic Acids Res. 17, 901–910.PubMedCrossRefGoogle Scholar
  48. 48.
    He, J. and Seela, F. (2002) 8-Aza-7-deazapurine-pyrimidine base pairs: the contribution of 2-and 7-substituents to the stability of duplex DNA. Tetrahedron 58, 4535–4542.CrossRefGoogle Scholar
  49. 49.
    Seela, F., Kröschel, R., and He, Y. (2001) Parallel DNA containing pyrazolo[3,4-d]pyrimidine analogues of isoguanine. Nucleosides, Nucleotides, Nucleic Acids 20, 1283–1286.CrossRefGoogle Scholar
  50. 50.
    Seela, F. and Kröschel, R. (2003) The base pairing properties of 8-aza-7-deaza-21-deoxyisoguanosine and 7-halogenated derivatives in oligonucleotide duplexes with paralled and antiparallel chain orientation. Nucleic Acids Res. 31, 7150–7158.PubMedCrossRefGoogle Scholar
  51. 51.
    Seela, F. and Kaiser, K. (1986) Phosphoramidites of base-modified 2′-deoxyinosine isosteres and solid-phase synthesis of d(GCI*CGC) oligomers containing an ambiguous base. Nucleic Acids Res. 14, 1825–1844.PubMedCrossRefGoogle Scholar
  52. 52.
    Seela, F., Becher, G., and Chen, Y. (2000) Fluorescence properties and base pair stability of oligonucleotides containing 8-aza-7-deaza-2′-deoxyisoinosine or 2′-deoxyisoinosine. Nucleosides, Nucleotides Nucleic Acids 19, 1581–1598.PubMedCrossRefGoogle Scholar
  53. 53.
    Seela, F. and Zulauf, M. (1998) Synthesis of 7-alkynylated 8-aza-7-deaza-2′-deoxyadenosines via the Pd-catalysed cross-coupling reaction. J. Chem. Soc., Perkin Trans. 1, 3233–3239.CrossRefGoogle Scholar
  54. 54.
    Seela, F., Zulauf, M., and Becher, G. (1997) Unexpected dehalogenation of 3-bromopyrazolo[3,4-d]pyrimidine nucleosides during nucleobase-anion glycosylation. Nucleosides & Nucleotides 16, 305–314.CrossRefGoogle Scholar
  55. 55.
    Winkeler, H.-D. and Seela, F. (1983) Synthesis of 2-amino-7-(2′-deoxy-β-Derythro-pentofuranosyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one: a new isostere of 2′-deoxyguanosine. J. Org. Chem. 48, 3119–3122.CrossRefGoogle Scholar
  56. 56.
    Hoffer, M. (1960) α-thymidin. Chem. Ber. 93, 2777–2781.CrossRefGoogle Scholar
  57. 57.
    Seela, F. and Becher, G. (1998) Synthesis of 7-halogenated 8-aza-7-deaza-2′-deoxyguanosines and related pyrazolo[3,4-d]pyrimidine 2′-deoxyribonucleosides. Synthesis 207–214.Google Scholar
  58. 58.
    Seela, F. and Zulauf, M. (1999) Synthesis of oligonucleotides containing pyrazolo[3,4-d]pyrimidines: the influence of 7-substituted 8-aza-7-deazaadenines on the duplex structure and stability. J. Chem. Soc., Perkin Trans. 1, 479–488.CrossRefGoogle Scholar
  59. 59.
    Users’ Manual of the DNA Synthesizer. Applied Biosystems, Weiterstadt, Germany, p. 392.Google Scholar
  60. 60.
    Mc Dowell, J. A. and Turner, D. H. (1996) Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAG GU CUC)2 by two-dimensional NMR and simulated annealing. Biochemistry 35, 14,077–14,089.CrossRefGoogle Scholar
  61. 61.
    Seela, F. and Steker, H. (1985) Facile synthesis of 2′-deoxyribofuranosides of allopurinol and 4-amino-1H-pyrazolo[3,4-d]pyrimidine via phase-transfer glycosylation. Helv. Chim. Acta 68, 563–570.CrossRefGoogle Scholar
  62. 62.
    Seela, F. and Steker, H. (1985) Synthesis of the β-D-deoxyribofuranoside of 6-amino-1H-pyrazolo[3,4-d]-pyrimidin-4(5H)-one: a new isoster of 2′-deoxyguanosine. Heterocycles 23, 2521–2524.CrossRefGoogle Scholar
  63. 63.
    Seela, F., Ramzaeva, N., and Becher, G. (1996) 7-deazapurine DNA: oligonucleotides containing 7-substituted 7-deaza-2′-deoxyguanosine and 8-aza-7-deaza-2′-deoxyguanosine. Collect. Czech. Chem. Commun. 61, s258–s261.Google Scholar
  64. 64.
    Kazimierczuk, Z., Mertens, R., Kawczynski, W., and Seela, F. (1991) 2′-deoxyisoguanosine and base-modified analogues: chemical and photochemical synthesis. Helv. Chim. Acta 74, 1742–1748.CrossRefGoogle Scholar
  65. 65.
    Seela, F. and Driller, H. (1988) 8-aza-7-deaza-2′,3′-dideoxyguanosine: deoxygenation of its 2′-deoxy-β-D-ribofuranoside. Helv. Chim. Acta 71, 757–761.CrossRefGoogle Scholar
  66. 66.
    Becher, G., He, J., and Seela, F. (2001) Major-groove-halogenated DNA: the effects of bromo and iodo substituents replacing H-C(7) of 8-aza-7-deazapurine-2,6-diamine or H-C(5) of uracil residues. Helv. Chim. Acta 84, 1048–1065.CrossRefGoogle Scholar
  67. 67.
    Seela, F., He, Y., and Wei, C. (1999) Parallel-stranded oligonucleotide duplexes containing 5-methylisocytosine-guanine and isoguanine-cytosine base pairs. Tetrahedron 55, 9481–9500.CrossRefGoogle Scholar
  68. 68.
    Nguyen, H.-K., Auffray, P., Asseline, U., Dupret, D., and Thuong, N. T. (1997) Modification of DNA duplexes to smooth their thermal stability independently of their base content for DNA sequencing by hybridization. Nucleic Acids Res. 25, 3059–3065.PubMedCrossRefGoogle Scholar
  69. 69.
    Seela, F. and He, Y. (2003) 6-Aza-2′-deoxyisocytidine: Synthesis, properties of oligonucleotides, and base-pair stability adjustment of DNA with parallel strand orientation. J. Org. Chem. 68, 367–377.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Frank Seela
    • 1
  • Yang He
    • 1
  • Junlin He
    • 1
  • Georg Becher
    • 1
  • Rita Kröschel
    • 1
  • Matthias Zulauf
    • 1
  • Peter Leonard
    • 1
  1. 1.Laboratorium für Organische und Bioorganische Chemie, Institut für ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations