Advertisement

Assay for Evaluating Ribonuclease H-Mediated Degradation of RNA-Antisense Oligonucleotide Duplexes

  • Annie Galarneau
  • Kyung-Lyum Min
  • Maria M. Mangos
  • Masad J. Damha
Part of the Methods in Molecular Biology book series (MIMB, volume 288)

Abstract

Ribonucleases H are complex enzymes whose functions are not clearly understood, further compounded by the fact that multiple forms of the enzyme are present in various organisms. They are known to recognize and degrade the ribonucleic acid (RNA) strand of numerous deoxyribonucleic acid (DNA)-RNA duplex substrates, and so may provide a unique mode of therapeutic intervention at the genetic level of virtually any disease. We have therefore set out detailed procedures for conducting routine assays with almost any one of this family of enzymes by a straightforward assay aimed at identifying novel enzyme-activating antisense oligonucleotides (AONs). The procedures described herein should enable easy identification of potent AON molecules, provided that the RNA is appropriately labeled for subsequent visualization following the guidelines set forth in this protocol.

Key Words

Ribonuclease H antisense oligonucleotide RNA cleavage polyacrylamide gel electrophoresis DNA-RNA hybrid 2′-fluoroarabinonucleic acid 

References

  1. 1.
    Walder, R. Y. and Walder, J. A. (1978) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 75, 5011–5015.CrossRefGoogle Scholar
  2. 2.
    Turchi, J. J., Huang, L., Murante, R. S., Kim, Y., and Bambara, R. A. (1994) Enzymatic completion of mammalian lagging-strand DNA replication. Proc. Natl. Acad. Sci. USA 91, 9803–9807.PubMedCrossRefGoogle Scholar
  3. 3.
    Arudchandran, A., Cerritelli, S. M., Narimatsu, S. K., et al. (2000) The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5, 789–802.PubMedCrossRefGoogle Scholar
  4. 4.
    Rydberg, B. and Game, J. (2002) Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl. Acad. Sci. USA 99, 16,654–16,659.PubMedCrossRefGoogle Scholar
  5. 5.
    Moelling, K., Bolognesi, D. P., Bauer, H., Büsen, W., Plassmann, H. W., and Hausen, P. (1971) Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat. New Biol. 234, 240–243.CrossRefGoogle Scholar
  6. 6.
    Stein, H. and Hausen, P. (1969) Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: effect on DNA-dependent RNA polymerase. Science 166, 393–395.PubMedCrossRefGoogle Scholar
  7. 7.
    Eder, P. S. and Walder, J. A. (1991) Ribonuclease H from K562 human erythroleukemia cells: purification, characterization and substrate specificity. J. Biol. Chem. 266, 6472–6479.PubMedGoogle Scholar
  8. 8.
    Frank, P., Albert, S., Cazenave, C., and Toulmé, J.-J. (1994) Purification and characterization of human ribonuclease HII. Nucleic Acids Res. 22, 5247–5254.PubMedCrossRefGoogle Scholar
  9. 9.
    Frank, P., Braunshofer-Reiter, C., Wintersberger, U., Grimm, R., and Büsen, W. (1998) Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII. Proc. Natl. Acad. Sci. USA 95, 12,872–12,877.PubMedCrossRefGoogle Scholar
  10. 10.
    Frank, P. Braunshofer-Reiter, C., Pöltl, A., and Holzmann, K. (1998) Cloning, subcellular localization and functional expression of human RNase HII. Biol. Chem. 379, 1404–1412.CrossRefGoogle Scholar
  11. 11.
    Johnson, M. S., McClure, M. A., Feng, D. F., Gray, J., and Doolittle, R. F. (1986) Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. USA 83, 7648–7652.PubMedCrossRefGoogle Scholar
  12. 12.
    Frank, P., Braunshofer-Reiter, C., and Wintersberger, U. (1998) Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 421, 23–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Berkower, L., Leis, J., and Hurwitz, J. (1973) Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. J. Biol. Chem. 248, 5914–5921.PubMedGoogle Scholar
  14. 14.
    Crouch, R. J. and Dirksen, M. L. (1982) Ribonuclease H. In Linn, S. M. and Roberts, R. J. (Eds.), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 211–241.Google Scholar
  15. 15.
    Minshull, J. and Hunt, T. (1986) The use of single-stranded DNA and RNase H to promote quantitative “hybrid arrest of translation“ of mRNA-DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res. 14, 6433–6451.PubMedCrossRefGoogle Scholar
  16. 16.
    Crooke, S. T. (1999) Molecular mechanism of action of antisense drugs. Biochim. Biophys. Acta 1489, 31–44.PubMedGoogle Scholar
  17. 17.
    Damha, M. J., Wilds, C. J., Noronha, A., et al. (1998) Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120, 12,976–12,977.CrossRefGoogle Scholar
  18. 18.
    Noronha, A. M., Wilds, C. J., Lok, C.-N., Viazovkina, K., Arion, D., Parniak, M. A., and Damha, M. J. (2000) Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures and ribonuclease H susceptibility of ANA:RNA hybrid duplexes. Biochemistry 39, 7050–7062.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilds, C. J. and Damha M. J. (2000) 2′-deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res. 28, 3625–3635.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, J., Verbeure, B., Luyten, I., et al. (2000) Cyclohexene nucleic acids (CeNA): serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA. J. Am. Chem. Soc. 122, 8595–8602.CrossRefGoogle Scholar
  21. 21.
    Trempe, J. F., Wilds, C. J., Denisov, A. Y., Pon, R. T., Damha, M. J., and Gehring, K. (2001) NMR solution structure of an oligonucleotide hairpin with a 2′F-ANA-RNA stem: implications for RNase H specificity toward DNA-RNA hybrid duplexes. J. Am. Chem. Soc. 123, 4896–4903.PubMedCrossRefGoogle Scholar
  22. 22.
    Damha, M. J., Noronha, A. M., Wilds, C. J., Trempe, J.-F., Denisov, A., and Gehring, K. (2001) Properties of arabinonucleic acids (ANA & 2′F-ANA): implications for the design of antisense therapeutics that invoke RNase H cleavage of RNA. Nucleosides Nucleotides Nucleic Acids 20, 429–440.PubMedCrossRefGoogle Scholar
  23. 23.
    Minasov, G., Teplova, M., Nielsen, P., Wengel, J., and Egli, M. (2000) Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA. Biochemistry 39, 3525–3532.PubMedCrossRefGoogle Scholar
  24. 24.
    Mangos, M. M. and Damha, M. J. (2002) Flexible and frozen sugar-modified nucleic acids—modulation of biological activity through furanose ring dynamics in the antisense strand. Curr. Top. Med. Chem. 2, 1147–1171.PubMedCrossRefGoogle Scholar
  25. 25.
    Mangos, M. M., Min, K.-L., Viazovkina, E., et al. (2003) Efficient Rnase H-directed cleavage of RNA promoted by antisense DNA or 2′F-ANA constructs containing acyclic nucleotide inserts. J. Am. Chem. Soc. 125, 651–659.CrossRefGoogle Scholar
  26. 26.
    Roberts, G. C., Dennis, E. A., Meadows, D. H., Cohen, J. S., and Jardetzky, O. (1969) The mechanism of action of ribonuclease. Proc. Natl. Acad. Sci. USA 62, 1151–1153.PubMedCrossRefGoogle Scholar
  27. 27.
    Yazbeck, D. R., Min, K.-L., and Damha, M. J. (2002) Molecular requirements for degradation of a modified sense RNA strand by Escherichia coli ribonuclease H. Nucleic Acids Res. 30, 3015–3025.PubMedCrossRefGoogle Scholar
  28. 28.
    Blackburn, P. and Moore, S. (1982) The Enzymes. Academic Press, New York.Google Scholar
  29. 29.
    Blumberg, D. D. (1987) Creating a ribonuclease-free environment. Methods Enzymol. 152, 20–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Annie Galarneau
    • 1
  • Kyung-Lyum Min
    • 1
  • Maria M. Mangos
    • 1
  • Masad J. Damha
    • 1
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada

Personalised recommendations