Skip to main content

In Situ Immunofluorescence Analysis

Immunofluorescence Microscopy

  • Protocol
Cell Cycle Control and Dysregulation Protocols

Abstract

Immunofluorescence is one of the most widely used techniques to study the localization of transcription factors, proteins, and structural components of nuclear architecture and cytoarchitecture. High-resolution in situ immunofluorescence approaches permit assessment of functional interrelationships between nuclear structure and gene expression that are linked to the intranuclear compartmentalization of nucleic acids and regulatory proteins (an example is shown in Fig. 1). The success of this method is dependent on the quality and specificity of the antibodies and the relative stability of antigens. Generally, the overall scheme for localization of cellular proteins involves fixation and permeabilization of cells for antibody accessibility, blocking, and staining with specific antibodies before microscopic examination. To reveal the subcellular and subnuclear macromolecular complexes that comprise and govern activation of the regulatory machinery for gene expression, cells can be subjected to selective extractions before immunodetection as described below.

In situ immunofluorescence detection of transcription factors at intranuclear sites. Runx/Cbfa/AML transcription factors provide an example of regulatory proteins that can be detected in situ. HeLa cells grown on gelatin-coated cover slips were transiently transfected with 0.5 μg of Runx2 expression plasmid, using “SuperFect” reagent (Qiagen Inc, CA). Cells were processed 20 h later for in situ detection of Run μ2 in intact cells (A) or after removal of cytoskeletal component (B) or in nuclear matrix preparations (C). Run μ2 proteins were detected with a rabbit polyclonal Run μ2 antibody and an fluorescein isothiocyanate-conjugated antirabbit secondary antibody. DAPI detects deoxyribonucleic acid (DNA) in nuclei of whole cells and CSK extracted cells but not in NMIF preparations because DNA has been digested and extracted. Differential interference contrast microscopy shows a bright field image of cells. The punctate, non-nucleolar distribution of Run μ2 protein is preserved throughout the extraction procedure. Original magnification × 63.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Javed, A. et al. (2004). In Situ Immunofluorescence Analysis. In: Giordano, A., Romano, G. (eds) Cell Cycle Control and Dysregulation Protocols. Methods in Molecular Biology™, vol 285. Humana Press. https://doi.org/10.1385/1-59259-822-6:023

Download citation

  • DOI: https://doi.org/10.1385/1-59259-822-6:023

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-949-0

  • Online ISBN: 978-1-59259-822-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics