Skip to main content

Dynamics of Collagen in Articular Cartilage Studied by Solid-State NMR Methods

  • Protocol
  • 933 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 101))

Abstract

Methods for studying the fast molecular dynamics of the rigid macromolecules in cartilage are described. The strong dipolar couplings and chemical shift anisotropies of these molecules necessitate application of solid-state nuclear magnetic resonance (NMR) techniques such as magic-angle spinning, cross-polarization, and high-power dipolar decoupling to obtain resolved NMR spectra. The molecules in cartilage that are amenable to these techniques are collagen and the rigid portion of the glycosaminoglycans (mostly hyaluronan). Site-specific mobility information is obtained from scaled dipolar couplings measured in 2D NMR experiments. Motionally averaged dipolar couplings can be interpreted in terms of order parameters that provide information about the amplitudes of molecular motions. Qualitative dynamics information is obtained from the simple wideline separation experiment measuring 1H-1H widelines representing the strength of the 1H-1H dipolar coupling. Quantitative values for molecular order parameters are obtained from precise measurements of 1H-13C dipolar couplings along the C-H bond vector. Two experimental techniques, the Lee-Goldburg cross-polarization and the dipolar coupling/chemical shift experiment, are illustrated to measure these 1H-13C dipolar couplings. Unlike glycosaminoglycans in cartilage, the collagen moiety remains substantially ordered, undergoing fast small amplitude motions. As enzymes cleave the macromolecules in articular cartilage in the course of arthritis, solid-state NMR techniques are capable of characterizing the increased motions of their degradation products in diseased cartilage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Antzutkin, O. N., Balbach, J. J., Leapman, R. D., Rizzo, N. W., Reed, J., and Tycko, R. (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils. Proc. Natl. Acad. Sci. USA 97, 13045–13050.

    Article  PubMed  CAS  Google Scholar 

  2. Ketchem, R. R., Hu, W., and Cross, T. A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460.

    Article  PubMed  CAS  Google Scholar 

  3. Lambotte, S., Jasperse, P., and Bechinger, B. (1998) Orientational distribution of α-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers. Biochemistry 37, 16–22.

    Article  PubMed  CAS  Google Scholar 

  4. Marassi, F. M., Ma, C., Gratkowski, H., et al. (1999) Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc. Natl. Acad. Sci. USA 96, 14336–14341.

    Article  PubMed  CAS  Google Scholar 

  5. Gr°bner, G., Burnett, I. J., Glaubitz, C., Choi, G., Mason, A. J., and Watts, A. (2000) Observations of light-induced structural changes of retinal within rhodopsin. Nature 405, 810–813.

    Article  Google Scholar 

  6. Tong, G., Pan, Y., Dong, H., Pryor, R., Wilson, G. E., and Schaefer, J. (1997) Structure and dynamics of pentaglycyl bridges in the cell walls of Staphylococcus aureus by 13C-15N REDOR NMR. Biochemistry 36, 9859–9866.

    Article  PubMed  CAS  Google Scholar 

  7. van Beek, J. D., Beaulieu, L., Schafer, H., Demura, M., Asakura, T., and Meier, B. H. (2000) Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405, 1077–1079.

    Article  PubMed  Google Scholar 

  8. Petkova, A. T., Hatanaka, M., Jaroniec, C. P., et al. (2002) Tryptophan interactions in bacteriorhodopsin: a heteronuclear solid-state NMR study. Biochemistry 41, 2429–2437.

    Article  PubMed  CAS  Google Scholar 

  9. Asakura, T., Yao, J., Yamane, T., Umemura, K., and Ulrich, A. S. (2002) Heterogeneous structure of silk fibers from Bombyx mori resolved by 13C solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 8794–8795.

    Article  PubMed  CAS  Google Scholar 

  10. Laws, D. D., Bitter, H. M., Liu, K., et al. (2001) Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc. Natl. Acad. Sci. USA 98, 11686–11690.

    Article  PubMed  CAS  Google Scholar 

  11. Alia, Matysik, J., Soede-Huijbregts, C., Baldus, M., et al. (2001) Ultrahigh field MAS NMR dipolar correlation spectroscopy of the histidine residues in light-harvesting complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex. J. Am. Chem. Soc. 123, 4803–4809.

    Article  PubMed  CAS  Google Scholar 

  12. Isaac, B., Gallagher, G. J., Balazs, Y. S., and Thompson, L. K. (2002) Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry 41, 3025–3036.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, S. O., Smith, C., Shekar, S., Peersen, O., Ziliox, M., and Aimoto, S. (2002) Transmembrane interactions in the activation of the Neu receptor tyrosine kinase. Biochemistry 41, 9321–9332.

    Article  PubMed  CAS  Google Scholar 

  14. Tuzi, S., Yamaguchi, S., Naito, A., Needleman, R., Lanyi, J. K., and Saito, H. (1996) Conformation and dynamics of [3-13C]Ala-labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance. Biochemistry 35, 7520–7527.

    Article  PubMed  CAS  Google Scholar 

  15. Yang, Z., Liivak, O., Seidel, A., LaVerde, G., Zax, D., and Jelinski, L. W. (2000) Supercontraction and backbone dynamics in spider silk: 13C and 2H NMR studies. J. Am. Chem. Soc. 122, 9019–9025.

    Article  CAS  Google Scholar 

  16. Huster, D., Xiao, L., and Hong, M. (2001) Solid-state NMR investigation of the dynamics of soluble and membrane-bound colicin Ia channel-forming domain. Biochemistry 40, 7662–7674.

    Article  PubMed  CAS  Google Scholar 

  17. Schiller, J., Naji, L., Huster, D., Kaufmann, J., and Arnold, K. (2001) 1H and 13C HR-MAS NMR investigations on native and enzymatically-digested bovine cartilage. MAGMA 13, 19–27.

    Article  PubMed  CAS  Google Scholar 

  18. Naji, L., Kaufmann, J., Huster, D., Schiller, J., and Arnold, K. (2000) 13C NMR relaxation study on cartilage and cartilage components. The origin of 13C NMR spectra of cartilage. Carbohydr. Res. 327, 439–446.

    Article  PubMed  CAS  Google Scholar 

  19. Huster, D., Schiller, J., and Arnold, K. (2002) Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid state NMR spectroscopy. Magn. Res. Med. 48, 624–632.

    Article  CAS  Google Scholar 

  20. Griffin, R. G. (1998) Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol. 5, 508–512.

    Article  PubMed  CAS  Google Scholar 

  21. Pines, A., Gibby, M. G., and Waugh, J. S. (1973) Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590.

    Article  CAS  Google Scholar 

  22. Stejskal, E. O. and Schaefer, J. (1976) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J. Am. Chem. Soc. 98, 1031–1032.

    Article  Google Scholar 

  23. Hediger, S., Meier, B. H., Kurur, N. D., Bodenhausen, G., and Ernst, R. R. (1994) NMR cross polarization by adiabatic passage through the Hartmann-Hahn condition (APHH). Chem. Phys. Lett. 223, 283–288.

    Article  CAS  Google Scholar 

  24. Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., and Griffin, R. G. (1995) Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958.

    Article  CAS  Google Scholar 

  25. Saito, H. and Yokoi, M. (1992) A 13C NMR study on collagens in the solid state: hydration/dehydration-induced conformational change of collagen and detection of internal motions. J. Biochem. (Tokyo) 111, 376–382.

    CAS  Google Scholar 

  26. Schmidt-Rohr, K. and Spiess, H. W. (1994) Multidimensional Solid-Date NMR and Polymers. Academic, San Diego, CA.

    Google Scholar 

  27. Schmidt-Rohr, K., Clauss, J., and Spiess, H. W. (1992) Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules 25, 3273–3277.

    Article  CAS  Google Scholar 

  28. van Rossum, B.-J., de Groot, C. P., Ladizhansky, V., Vega, S., and de Groot, H. J. M. (2000) A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J. Am. Chem. Soc. 122, 3465–3472.

    Article  Google Scholar 

  29. Goldburg, W. I. and Lee, M. (1963) Nuclear magnetic resonance line narrowing by a rotating rf field. Phys. Rev. Lett. 11, 255–258.

    Article  CAS  Google Scholar 

  30. Hong, M., Yao, X., Jakes, K. S., and Huster, D. (2002) Investigation of molecular motions by magic-angle cross-polarization NMR spectroscopy. J. Phys. Chem. B 106, 7355–7364.

    Article  CAS  Google Scholar 

  31. Kolbert, A. C., de Groot, H. J. M., Levitt, M. H., et al. (1990) Two-dimensional dipolar-chemical shift NMR in rotating solids, in Multinuclear Magnetic Resonance in Liquids and Solids—Chemical Applications (Granger, P. and Harris, R. K., eds.) Kluwer, Dordrecht, pp. 339–354.

    Google Scholar 

  32. Bielecki, A., Kolbert, A. C., and Levitt, M. H. (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem. Phys. Lett. 155, 341–345.

    Article  CAS  Google Scholar 

  33. Hong, M., Gross, J. D., and Griffin, R. G. (1997) Site-resolved determination of peptide torsion angle Φ from relative orientations of backbone N-H and C-H bonds by solid-state NMR. J. Phys. Chem. 101, 5869–5874.

    CAS  Google Scholar 

  34. Vinogradov, E., Madhu, P. K., and Vega, S. (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chem. Phys. Lett. 314, 443–450.

    Article  CAS  Google Scholar 

  35. Maricq, M. M. and Waugh, J. S. (1979) NMR in rotating solids. J. Chem. Phys. 70, 3300–3316.

    Article  CAS  Google Scholar 

  36. Bennett, A. E., Griffin, R. G., and Vega, S. (1994) NMR Basic Principles and Progress. Springer Verlag, Berlin, pp. 3–77.

    Google Scholar 

  37. Dusold, S. and Sebald, A. (2000) Dipolar recoupling under magic-angle spinning conditions. Ann. Rep. NMR Spectrosc. 41, 185–264.

    Article  CAS  Google Scholar 

  38. Brown, S. P. and Spiess, H. W. (2001) Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 101, 4125–4155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Huaman Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Huster, D., Schiller, J., Arnold, K. (2004). Dynamics of Collagen in Articular Cartilage Studied by Solid-State NMR Methods. In: De Ceuninck, F., Sabatini, M., Pastoureau, P. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine, vol 101. Humana Press. https://doi.org/10.1385/1-59259-821-8:303

Download citation

  • DOI: https://doi.org/10.1385/1-59259-821-8:303

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-505-7

  • Online ISBN: 978-1-59259-821-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics