Skip to main content

Mechanical Characterization of Native and Tissue-Engineered Cartilage

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 101))

Abstract

Cartilage functions as a low-friction, wear-resistant, load-bearing tissue. During a normal gait cycle, one cartilage surface rolls and slides against another, all the while being loaded and unloaded. The durability of the tissue also makes for an impressive material to study. However, when cartilage is damaged or diseased, the tissue has little capacity to repair itself. The goal of cell-based repair strategies to replace damaged or diseased tissue requires that the functional biomechanical properties of normal (developing or mature), diseased, and repair cartilage be restored. This chapter addresses some of the major methods used to assess the biomechanical properties of native and tissue-engineered cartilage. First, the traditional methods of testing by compression, tension, shear, and indentation are reviewed. Next, additional methods to evaluate interfacial mechanics and lubrication are described. Thus, a variety of mechanical tests may be used to assess functional properties for normal, diseased, and tissue-engineered cartilage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maroudas, A. (1968) Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8, 575–595.

    Article  PubMed  CAS  Google Scholar 

  2. Maroudas, A. (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260, 808–809.

    Article  PubMed  CAS  Google Scholar 

  3. Basser, P. J., Schneiderman, R., Bank, R., Wachtel, E., and Maroudas, A. (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351, 207–219.

    Article  PubMed  CAS  Google Scholar 

  4. Williamson, A. K., Chen, A. C., and Sah, R. L. (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J. Orthop. Res. 19, 1113–1121.

    Article  PubMed  CAS  Google Scholar 

  5. Williamson, A. K., Masuda, K., Chen, A. C., Thonar, E. J.-M. A., and Sah, R. L. (2003) Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21, 872–880.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong, C. G. and Mow, V. C. (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am. 64, 88–94.

    PubMed  CAS  Google Scholar 

  7. Akizuki, S., Mow, V. C., Muller, F., Pita, J. C., Howell, D. S., and Manicourt, D. H. (1986) Tensile properties of human knee joint cartilage: I. influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4, 379–392.

    Article  PubMed  CAS  Google Scholar 

  8. Kempson, G. E. (1982) Relationship between the tensile properties of articular cartilage from the human knee and age. Ann. Rheum. Dis. 41, 508–511.

    Article  PubMed  CAS  Google Scholar 

  9. Maroudas, A., Katz, E. P., Wachtel, E. J., Mizrahi, J., and Soudry, M. (1986) Physico-chemical properties and functional behavior of normal and osteoarthritic human cartilage, in Articular Cartilage Biochemistry (Kuettner, K., Schleyerbach, R., and Hascall, V. C., eds.), Raven, New York, pp. 311–329.

    Google Scholar 

  10. Sah, R. L. (2002) The biomechanical faces of articular cartilage, in The Many Faces of Osteoarthritis (Kuettner, K. E. and Hascall, V. C., eds.), Raven, New York, pp. 409–422.

    Google Scholar 

  11. Mow, V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G. (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment. J. Biomech. Eng. 102, 73–84.

    Article  PubMed  CAS  Google Scholar 

  12. Schinagl, R. M., Gurskis, D., Chen, A. C., and Sah, R. L. (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15, 499–506.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, W. R., Ting-Beall, H. P., Lee, G. M., Kelley, S. S., Hochmuth, R. M., and Guilak, F. (1999) Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32, 119–127.

    Article  PubMed  CAS  Google Scholar 

  14. Buschmann, M. D. and Grodzinsky, A. J. (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117, 179–192.

    Article  PubMed  CAS  Google Scholar 

  15. Schwarz, S. E. and Oldham, W. G. (1993) Electrical Engineering: An Introduction, 2nd ed. Harcourt Brace Jovanovich, Fort Worth, TX.

    Google Scholar 

  16. Venn, M. F. and Maroudas, A. (1977) Chemical composition and swelling of normal and osteoarthritic femoral head cartilage I: chemical composition. Ann. Rheum. Dis. 36, 121–129.

    Article  PubMed  CAS  Google Scholar 

  17. Waldman, S. D., Spiteri, C. G., Grynpas, M. D., Pilliar, R. M., and Kandel, R. A. (2003) Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J. Orthop. Res. 21, 590–596.

    Article  PubMed  CAS  Google Scholar 

  18. Frank, E. H., Grodzinsky, A. J., Koob, T. J., and Eyre, D. R. (1987) Streaming potentials: a sensitive index of enzymatic degradation in articular cartilage. J. Orthop. Res. 5, 497–508.

    Article  PubMed  CAS  Google Scholar 

  19. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758.

    Article  PubMed  CAS  Google Scholar 

  20. Schinagl, R. M., Ting, M. K., Price, J. H., and Sah, R. L. (1996) Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann. Biomed. Eng. 24, 500–512.

    Article  PubMed  CAS  Google Scholar 

  21. Frank, E. H. and Grodzinsky, A. J. (1987) Cartilage electromechanics-II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. 20, 629–639.

    Article  PubMed  CAS  Google Scholar 

  22. Kwan, M. K., Lai, W. M., and Mow, V. C. (1984) Fundamentals of fluid transport through cartilage in compression. Ann. Biomed. Eng. 12, 537–558.

    Article  PubMed  CAS  Google Scholar 

  23. Li, L. P., Buschmann, M. D. and Shirazi-Adl, A. (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J. Biomech. 33, 1533–1541.

    Article  PubMed  CAS  Google Scholar 

  24. DiSilvestro, M. R., Zhu, Q., and Suh, J. K. (2001) Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II—Effect of variable strain rates. J. Biomech. Eng. 123, 198–200.

    Article  PubMed  CAS  Google Scholar 

  25. DiSilvestro, M. R., Zhu, Q., Wong, M., Jurvelin, J. S., and Suh, J. K. (2001). Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—Simultaneous prediction of reaction force and lateral displacement. J. Biomech. Eng. 123, 191–197.

    Article  PubMed  CAS  Google Scholar 

  26. Korhonen, R. K., Laasanen, M. S., Toyras, J., et al. (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909.

    Article  PubMed  CAS  Google Scholar 

  27. Li, L., Soulhat, J., Buschmann, M. D., and Shirazi-Adl, A. (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14, 673–682.

    Article  CAS  Google Scholar 

  28. Armstrong, C. G., Lai, W. M., and Mow, V. C. (1984) An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106, 165–173.

    Article  PubMed  CAS  Google Scholar 

  29. Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B., and Buschmann, M. D. (2000) Unconfined compression of articular cartilage. Nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189–195.

    Article  PubMed  CAS  Google Scholar 

  30. Bursac, P. M., Obitz, T. W., Eisenberg, S. R., and Stamenovic, D. (1999). Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32, 1125–1130.

    Article  PubMed  CAS  Google Scholar 

  31. Wang, C. C., Deng, J. M., Ateshian, G. A., and Hung, C. T. (2002) An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J. Biomech. Eng. 124, 557–567.

    Article  PubMed  Google Scholar 

  32. Wang, C. C., Chahine, N. O., Hung, C. T., and Ateshian, G. A. (2003) Optical determination of anisotropic material properties of bovine articular cartilage in compression. J. Biomech. 36, 339–353.

    Article  PubMed  Google Scholar 

  33. Langelier, E. and Buschmann, M. D. (2003). Increasing strain and strain rate strengthen transient stiffness but weaken the response to subsequent compression for articular cartilage in unconfined compression. J. Biomech. 36, 853–859.

    Article  PubMed  Google Scholar 

  34. Li, L. P., Buschmann, M. D., and Shirazi-Adl, A. (2003) Strain-rate dependent stiffness of articular cartilage in unconfined compression. J. Biomech. Eng. 125, 161–168.

    Article  PubMed  CAS  Google Scholar 

  35. Wong, M., Ponticiello, M., Kovanen, V., and Jurvelin, J. S. (2000) Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  36. Korhonen, R. K., Laasanen, M. S., Toyras, J., Lappalainen, R., Helminen, H. J., and Jurvelin, J. S. (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379.

    Article  PubMed  Google Scholar 

  37. Kim, Y. J., Bonassar, L. J., and Grodzinsky, A. J. (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  38. Soltz, M. A. and Ateshian, G. A. (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J. Biomech. Eng. 122, 576–586.

    Article  PubMed  CAS  Google Scholar 

  39. Fung, Y. C. (1972). Stress-strain history relations of soft tissues in simple elongation, in Biomechanics: Its Foundations and Objectives (Fung, Y. C., Perrone, N., and Anliker, M., eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.

    Google Scholar 

  40. Li, J. T., Armstrong, C. G., and Mow, V. C. (1983) The effect of shtain rate on mechanical properties of articular cartilage in tension, in: Proceedings Biomechanics Symposium Trans ASME, AMD, vol. 56, p. 117, ASME, Houston, TX.

    Google Scholar 

  41. Akizuki, S., Mow, V. C., Muller, F., Pita, J. C., Howell, D. S., and Manicourt, D. H. (1987) Tensile properties of human knee joint cartilage: II. correlations between weight bearing and tissue pathology and the kinetics of swelling. J. Orthop. Res. 5, 173–186.

    Article  PubMed  CAS  Google Scholar 

  42. Kempson, G. E., Muir, H., Pollard, C., and Tuke, M. (1973) The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim. Biophys. Acta 297, 456–472.

    PubMed  CAS  Google Scholar 

  43. Kempson, G. E. (1991) Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim. Biophys. Acta 1075, 223–230.

    PubMed  CAS  Google Scholar 

  44. Hayes, W. C. and Mockros, L. F. (1971) Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562–568.

    PubMed  CAS  Google Scholar 

  45. Hayes, W. C. and Bodine, A. J. (1978) Flow-independent viscoelastic properties of articular cartilage matrix. J. Biomech. 11, 407–419.

    Article  PubMed  CAS  Google Scholar 

  46. Zhu, W., Mow, V. C., Koob, T. J., and Eyre, D. R. (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatment. J. Orthop. Res. 11, 771–781.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, W., Chern, K. Y., and Mow, V. C. (1994). Anisotropic viscoelastic shear properties of bovine meniscus. Clin. Orthop. 306, 34–45.

    PubMed  Google Scholar 

  48. Simon, W. H., Mak, A., and Spirt, A. (1990) The effect of shear fatigue on bovine articular cartilage. J. Orthop. Res. 8, 86–93.

    Article  PubMed  CAS  Google Scholar 

  49. Woo, S. L.-Y., Kwan, M. K., Lee, T. Q., Field, F. P., Kleiner, J. B., and Coutts, R. D. (1987) Perichondrial autograft for articular cartilage: shear modulus of neocartilage studied in rabbits. Acta Orthop. Scand. 58, 510–515.

    Article  PubMed  CAS  Google Scholar 

  50. Ahsan, T. and Sah, R. L. (1999). Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage 7, 29–40.

    Article  PubMed  CAS  Google Scholar 

  51. Zuger, B. J., Ott, B., Mainil-Varlet, P., et al. (2001) Laser solder welding of articular cartilage: tensile strength and chondrocyte viability. Lasers Surg. Med. 28, 427–434.

    Article  PubMed  CAS  Google Scholar 

  52. Peretti, G. M., Zaporojan, V., Spangenberg, K. M., Randolph, M. A., Fellers, J., and Bonassar, L. J. (2003) Cell-based bonding of articular cartilage: An extended study. J. Biomed. Mater. Res. 64A, 517–524.

    Article  CAS  Google Scholar 

  53. Reindel, E. S., Ayroso, A. M., Chen, A. C., Chun, D. M., Schinagl, R. M., and Sah, R. L. (1995) Integrative repair of articular cartilage in vitro: adhesive strength of the interface region. J. Orthop. Res. 13, 751–760.

    Article  PubMed  CAS  Google Scholar 

  54. DiMicco, M. A., Waters, S. N., Akeson, W. H., and Sah, R. L. (2002). Integrative articular cartilage repair: dependence on developmental stage and collagen metabolism. Osteoarthritis Cartilage 10, 218–225.

    Article  PubMed  CAS  Google Scholar 

  55. DiMicco, M. A. and Sah, R. L. (2001) Integrative cartilage repair: adhesive strength correlates with collagen deposition. J. Orthop. Res. 19, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  56. Ahsan, T., Lottman, L. M., Harwood, F. L., Amiel, D., and Sah, R. L. (1999) Integrative cartilage repair: inhibition by β-aminoproprionitrile. J. Orthop. Res. 17, 850–857.

    Article  PubMed  CAS  Google Scholar 

  57. Giurea, A., DiMicco, M. A., Akeson, W. H., and Sah, R. L. (2002) Development-associated differences in integrative cartilage repair: roles of biosynthesis and matrix. J. Orthop. Res. 20, 1274–1281.

    Article  PubMed  Google Scholar 

  58. Englert, C., McGowan, K. B., Klein, T. J., Giurea, A., Schumacher, B. L., and Sah, R. L. (2003) Inhibition of integrative cartilage repair by synovial fluid components. Trans. Orthop. Res. Soc. 28, 189.

    Google Scholar 

  59. Jackson, R. W., Judy, M. M., Matthews, J. L., and Nosir, H. (1997) Photochemical tissue welding with 1,8 naphthalimide dyes: in vivo meniscal and cartilage welds. Trans. Orthop. Res. Soc. 22, 650.

    Google Scholar 

  60. McGowan, K. B. and Sah, R. L. (2003) Pre-treatment with β-aminoproprionitrile accelerates integrative cartilage repair. Trans. Orthop. Res. Soc. 28, 723.

    Google Scholar 

  61. Obradovic, B., Martin, I., Padera, R. F., Treppo, S., Freed, L. E., and Vunjak-Novakovic, G. (2001) Integration of engineered cartilage. J. Orthop. Res. 19, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  62. van de Breevaart Bravenboer, J., In der Maur, C. D., Bos, P. K., et al. (2003). Increased interfacial strength of transplanted cartilage in vivo following enzymatic treatment of wound edges. Trans. Orthop. Res. Soc. 28, 188.

    Google Scholar 

  63. Matthewson, M. H. and Dandy, D. J. (1978) Osteochondral fractures of the lateral femoral condyle. J. Bone Joint Surg. Br. 60, 199–202.

    PubMed  Google Scholar 

  64. Flachsmann, R., Broom, N. D., Hardy, A. E., and Moltschaniwskyj, G. (2000). Why Is the adolescent joint particularly susceptible to osteochondral shear fracture? Clin. Orthop. 381, 212–221.

    Article  PubMed  Google Scholar 

  65. Kennedy, J. C., Grainger, R. W., and McGraw, R. W. (1966) Osteochondral fractures of the femoral condyles. J. Bone Joint Surg. Br. 48, 436–440.

    PubMed  CAS  Google Scholar 

  66. Rosenberg, N. J. (1964) Osteochondral fractures of the lateral femoral condyle. J. Bone Joint Surg. Am. 46, 1013–1026.

    PubMed  CAS  Google Scholar 

  67. Flachsmann, E. R., Broom, N. D., and Oloyede, A. (1995) A biomechanical investigation of unconstrained shear failure of the osteochondral region under impact loading. Clin. Biomech. 10, 156–165.

    Article  Google Scholar 

  68. Broom, N. D., Oloyede, A., Flachsmann, R., and Hows, M. (1996) Dynamic fracture characteristics of the osteochondral junction undergoing shear deformation. Med. Eng. Phys. 18, 396–404.

    Article  PubMed  CAS  Google Scholar 

  69. Mente, P. L. and Lewis, J. L. (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12, 637–647.

    Article  PubMed  CAS  Google Scholar 

  70. Kumar, P., Oka, M., Nakamura, T., Yamamuro, T., and Delecrin, J. (1991) Mechanical strength of osteochondral junction. Nippon Seikeigeka Gakkai Zasshi 65, 1070–1077.

    PubMed  CAS  Google Scholar 

  71. Hirsch, C. (1944) A contribution to the pathogenesis of chondromalacia of the patella. Acta Chir. Scand. 90(suppl), 9.

    Google Scholar 

  72. Elmore, S. M., Sokoloff, L., Norris, G., and Carmeci, P. (1963) Nature of “imperfect” elasticity of articular cartilage. J. Appl. Physiol. 18, 393–396.

    Google Scholar 

  73. Sokoloff, L. (1966) Elasticity of aging cartilage. Proc. Fed. Am. Socs. Exp. Biol. 25, 1089–1095.

    CAS  Google Scholar 

  74. Kempson, G. E., Freeman, M. A. R., and Swanson, S. A. V. (1971) The determination of a creep modulus for articular cartilage by indentation tests of the human femoral head. J. Biomech. 4, 239–250.

    Article  PubMed  CAS  Google Scholar 

  75. Coletti, J. M., Akeson, W. H., and Woo, S. L.-Y. (1972) A comparison of the physical behavior of normal articular cartilage and the arthroplasty surface. J. Bone Joint Surg. Am. 54, 147–160.

    PubMed  Google Scholar 

  76. Parsons, J. R. and Black, J. (1977) The viscoelastic shear behavior of normal rabbit articular cartilage. J. Biomech. 10, 21–29.

    Article  PubMed  CAS  Google Scholar 

  77. Parsons, J. R. and Black, J. (1979) Mechanical behavior of articular cartilage: quantitative changes with alteration of ionic environment. J. Biomech. 12, 765–773.

    Article  PubMed  CAS  Google Scholar 

  78. Mow, V. C., Gibbs, M. C., Lai, W. M., Zhu, W. B., and Athanasiou, K. A. (1989). Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study. J. Biomech. 22, 853–861.

    Article  PubMed  CAS  Google Scholar 

  79. Jurvelin, J., Kiviranta, I., Saamanen, A.-M., Tammi, M., and Helminen, H. J. (1990). Indentation stiffness of young canine knee articular cartilage—influence of strenuous joint loading. J. Biomech. 23, 1239–1246.

    Article  PubMed  CAS  Google Scholar 

  80. Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., Malinin, T. I., and Mow, V. C. (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9, 330–340.

    Article  PubMed  CAS  Google Scholar 

  81. Athanasiou, K. A., Niederauer, G. G., and Schenck, R. C. (1995) Biomechanical topography of human ankle cartilage. Ann. Biomed. Eng. 23, 697–704.

    Article  PubMed  CAS  Google Scholar 

  82. Lyyra, T., Jurvelin, J., Pitkänen, P., Väätäinen, U., and Kiviranta, I. (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17, 395–399.

    Article  PubMed  CAS  Google Scholar 

  83. Lyyra, T., Kiviranta, I., Vaatainen, U., Helminen, H. J., and Jurvelin, J. S. (1999). In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res. 48, 482–487.

    Article  PubMed  CAS  Google Scholar 

  84. Franz, T., Hasler, E. M., Hagg, R., Weiler, C., Jakob, R. P., and Mainil-Varlet, P. (2001) In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthritis Cartilage 9, 582–592.

    Article  PubMed  CAS  Google Scholar 

  85. Hertz, H. (1881) On the contact of elastic solids. J. Reine Angew. Math. 92, 156.

    Google Scholar 

  86. Love, A. (1944) A Treatise on the Mathematical Theory of Elasticity, 4th ed, Dover, New York.

    Google Scholar 

  87. Hayes, W. C., Keer, L. M., Herrmann, K. G., and Mockros, L. F. (1972) A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551.

    Article  PubMed  CAS  Google Scholar 

  88. Mak, A. F., Lai, W. M., and Mow, V. C. (1987) Biphasic indentation of articular cartilage-I. theoretical analysis. J. Biomech. 20, 703–714.

    Article  PubMed  CAS  Google Scholar 

  89. Lee, R. C., Frank, E. H., Grodzinsky, A. J., and Roylance, D. K. (1981) Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties. J. Biomech. Eng. 103, 280–292.

    Article  PubMed  CAS  Google Scholar 

  90. Grodzinsky, A. J. and Frank, E. H. (1990) Electromechanical and physicochemical regulation of cartilage strength and metabolism, in Connective Tissue Matrix: vol. II. Topics in Molecular and Structural Biology (Hukins, D. W. L., ed.), CRC Press, Boca Raton, FL, pp. 91–126.

    Google Scholar 

  91. Chen, A. C., Bae, W. C., Schinagl, R. M., and Sah, R. L. (2001) Depth-and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J. Biomech. 34, 1–12.

    Article  PubMed  CAS  Google Scholar 

  92. Chen, S. S., Falcovitz, Y. H., Schneiderman, R., Maroudas, A., and Sah, R. L. (2001) Depth-dependent compressive properties of normal aged human femoral head articular cartilage. Osteoarthritis Cartilage 9, 561–569.

    Article  PubMed  CAS  Google Scholar 

  93. Chang, D. G., Lottman, L. M., Chen, A. C., et al. (1999) The depth-dependent, multi-axial properties of aged human patellar cartilage in tension. Trans. Orthop. Res. Soc. 24, 644.

    Google Scholar 

  94. Elliot, D. M., Narmoneva, D. A., and Setton, L. A. (2002) Direct measurement of the Poisson’s ratio of human patella cartilage in tension. J. Biomech. Eng. 124, 223–228.

    Article  Google Scholar 

  95. Hunziker, E. B. (1992) Articular cartilage structure in humans and experimental animals, in Articular Cartilage and Osteoarthritis (Kuettner, K. E., Schleyerbach, R., Peyron, J. G., and Hascall, V. C., eds.), Raven, New York, pp. 183–199.

    Google Scholar 

  96. Maroudas, A. (1979) Physico-chemical properties of articular cartilage, in Adult Articular Cartilage, 2nd. ed. (Freeman, M. A. R., ed.), Pitman Medical, Tunbridge Wells, England, pp. 215–290.

    Google Scholar 

  97. Bae, W. C., Lewis, C. W., and Sah, R. L. (2003) Intra-tissue strain distribution in normal human articular cartilage during clinical indentation testing. Trans. Orthop. Res. Soc. 28, 254.

    Google Scholar 

  98. Sutton, M. A., McNeill, S. R., Helm, J. D., and Chao, Y. J. (2000) Advances in two-dimensional and three-dimensional computer vision, in Photomechanics, vol. 77 (Rastogi, P. K., ed.), Springer, New York, pp. 323–372.

    Chapter  Google Scholar 

  99. Fortin, M., Buschmann, M. D., Bertrand, M. J., Foster, F. S., and Ophir, J. (2003) Dynamic measurement of internal solid displacement in articular cartilage using ultrasound backscatter. J. Biomech. 36, 443–447.

    Article  PubMed  Google Scholar 

  100. Agemura, D. H., O’Brien, W. D., Jr., Olerud, J. E., Chun, L. E. & Eyre, D. E. (1990). Ultrasonic propagation properties of articular cartilage at 100 MHz. J. Acoust. Soc. Am. 87, 1786–1791.

    Article  PubMed  CAS  Google Scholar 

  101. Mow, V. C. and Ateshian, G. A. (1997) Lubrication and wear of diarthrodial joints. In Basic Orthopaedic Biomechanics 2nd edit. (Mow, V. C. and Hayes, W. C., eds.), Raven, New York, pp. 275–315.

    Google Scholar 

  102. Schumacher, B. L., Block, J. A., Schmid, T. M., Aydelotte, M. B., and Kuettner, K. E. (1994). A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys. 311, 144–152.

    Article  PubMed  CAS  Google Scholar 

  103. Schumacher, B. L., Hughes, C. E., Kuettner, K. E., Caterson, B., and Aydelotte, M. B. (1999) Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J. Orthop. Res. 17, 110–120.

    Article  PubMed  CAS  Google Scholar 

  104. Jay, G. D. (1992) Characterization of a bovine synovial fluid lubricating factor. I. Chemical, surface activity and lubricating properties. Connect. Tissue Res. 28, 71–88.

    Article  PubMed  CAS  Google Scholar 

  105. Swann, D. A. and Radin, E. L. (1972) The molecular basis of articular lubrication. J. Biol. Chem. 247, 8069–8073.

    PubMed  CAS  Google Scholar 

  106. Swann, D. A., Sotman, S., Dixon, M., and Brooks, C. (1977) The isolation and partial characterization of the major glycoprotein (LGP-I) from the articular lubricating fraction of synovial fluid. Biochem. J. 161, 473–485.

    PubMed  CAS  Google Scholar 

  107. Swann, D. A., Hendren, R. B., Radin, E. L., Sotman, S. L., and Duda, E. A. (1981) The lubricating activity of synovial fluid glycoproteins. Arthritis. Rheum. 24, 22–30.

    Article  PubMed  CAS  Google Scholar 

  108. Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W., and Shore, E. (1985). The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 225, 195–201.

    PubMed  CAS  Google Scholar 

  109. Hills, B. A. (1989) Oligolamellar lubrication of joints by surface active phospholipid. J. Rheumatol. 16, 82–91.

    PubMed  CAS  Google Scholar 

  110. Hills, B. A. (1995) Remarkable anti-wear properties of joint surfactant. Ann. Biomed. Eng. 23, 112–115.

    Article  PubMed  CAS  Google Scholar 

  111. Hills, B. A. and Monds, M. K. (1998). Enzymatic identification of the load-bearing boundary lubricant in the joint. Br. J. Rheumatol. 37, 137–142.

    PubMed  CAS  Google Scholar 

  112. Malcolm, L. L. (1976) An experimental investigation of the frictional and deformational responses of articular cartilage interfaces to static and dynamic loading. Ph.D. Thesis, University of California, San Diego.

    Google Scholar 

  113. Linn, F. C. (1967) Lubrication of animal joints. I. the arthrotripsometer. J. Bone Joint Surg. Am. 49, 1079–1098.

    PubMed  CAS  Google Scholar 

  114. Linn, F. C. (1968) Lubrication of animal joints. II. the mechanism. J. Biomech. 1, 193–205.

    Article  PubMed  CAS  Google Scholar 

  115. Murakami, T., Higaki, H., Sawae, Y., Ohtsuki, N., Moriyama, S., and Nakanishi, Y. (1998) Adaptive and multimode lubrication in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. [H] 212, 23–35.

    CAS  Google Scholar 

  116. Mori, S., Naito, M., and Moriyama, S. (2002) Highly viscous sodium hyaluronate and joint lubrication. Int. Orthop. 26, 116–121.

    Article  PubMed  CAS  Google Scholar 

  117. Kumar, P., Oka, M., Toguchida, J., et al. (2001) Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J. Anat. 199, 241–250.

    Article  PubMed  CAS  Google Scholar 

  118. Unsworth, A., Dowson, D., and Wright, V. (1975) Some new evidence on human joint lubrication. Ann. Rheum. Dis. 27, 512–520.

    Google Scholar 

  119. Unsworth, A., Dowson, D., and Wright, V. (1975) The frictional behavior of human synovial joints: I. Natural joints. Trans. ASME F. J. Lubr. Technol. 97, 360–376.

    Google Scholar 

  120. McCutchen, C. W. (1959) Mechanism of animal joints: sponge-hydrostatic and weeping bearings. Nature 184, 1284–1285.

    Article  Google Scholar 

  121. Radin, E. L., Paul, I. L., Swann, D. A., and Schottstaedt, E. S. (1971) Lubrication of synovial membrane. Ann. Rheum. Dis. 30, 322–325.

    Article  PubMed  CAS  Google Scholar 

  122. Davis, W. H. J., Lee, S. L., and Sokoloff, L. (1978) Boundary lubricating ability of synovial fluid in degenerative joint disease. Arthritis Rheum. 21, 754–760.

    Article  PubMed  Google Scholar 

  123. Hills, B. A. and Monds, M. K. (1998) Deficiency of lubricating surfactant lining in the articular surfaces of replaced hips and knees. Br. J. Rheumatol. 37, 143–147.

    Article  PubMed  CAS  Google Scholar 

  124. Schwarz, I. M. and Hills, B. A. (1998) Surface-active phospholipids as the lubricating component of lubricin. Br. J. Rheumatol. 37, 21–26.

    Article  PubMed  CAS  Google Scholar 

  125. Forster, H. and Fisher, J. (1996). The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. [H] 210, 109–119.

    CAS  Google Scholar 

  126. Jay, G. D., Lane, B. P., and Sokoloff, L. (1992) Characterization of a bovine synovial fluid lubricating factor III. The interaction with hyaluronic acid. Connect. Tissue Res. 28, 245–255.

    Article  PubMed  CAS  Google Scholar 

  127. Jay, G. D., Haberstroh, K., and Cha, C.-J. (1998) Comparison of the boundary-lubricating ability of bovine synovial fluid, lubricin, and Healon. J. Biomed. Mater. Res. 40, 414–418.

    Article  PubMed  CAS  Google Scholar 

  128. Jay, G. D. and Cha, D.-J. (1999) The effect of phospholipase digestion upon the boundary lubricating activity of synovial fluid. J. Rheumatol. 26, 2454–2457.

    PubMed  CAS  Google Scholar 

  129. Jay, G. D., Tantravahi, U., Britt, D. E., Barrach, H. J., and Cha, C. J. (2001) Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J. Orthop. Res. 19, 677–687.

    Article  PubMed  CAS  Google Scholar 

  130. Lai, W. M. and Mow, V. C. (1980) Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17, 111–123.

    PubMed  CAS  Google Scholar 

  131. Ateshian, G. A., Warden, W. H., Kim, J. J., Grelsamer, R. P., and Mow, V. C. (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  132. Klisch, S. M. and Lotz, J. C. (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. J. Biomech. Eng. 122, 180–188.

    Article  PubMed  CAS  Google Scholar 

  133. Wang, C. C.-B., Hung, C. T., and Mow, V. C. (2001) An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34, 75–84.

    Article  PubMed  CAS  Google Scholar 

  134. Mak, A. F. (1986) The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108, 123–130.

    Article  PubMed  CAS  Google Scholar 

  135. Meachim, G. (1972) Light microscopy of Indian ink preparations of fibrillated cartilage. Ann. Rheum. Dis. 31, 457–464.

    Article  PubMed  CAS  Google Scholar 

  136. Bullough, P. and Goodfellow, J. (1968) The significance of the fine structure of articular cartilage. J. Bone Joint Surg. Br. 50, 852–857.

    PubMed  CAS  Google Scholar 

  137. Clark, J. M. (1991) Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J. Orthop. Res. 9, 246–257.

    Article  PubMed  CAS  Google Scholar 

  138. Kempson, G. E., Freeman, M. A. R., and Swanson, S. A. V. (1968) Tensile properties of articular cartilage. Nature 220, 1127–1128.

    Article  PubMed  CAS  Google Scholar 

  139. Roth, V. and Mow, V. C. (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. Am. 62, 1102–1117.

    PubMed  CAS  Google Scholar 

  140. Temple, M. M., Bae, W. C., Rivard, K. L., and Sah, R. L. (2002) Age-and site-associated biomechanical weakening of human articular cartilage of the femoral condyle: relationship to cellularity and wear. Trans. Orthop. Res. Soc. 27, 84.

    Google Scholar 

  141. Bae, W. C., Law, A. W., Amiel, D., Sah, R. L. (2004) Sensitivity of indentation testing to step off edges and interface integrity in cartilage repair. Ann. Biomed. Eng. (in press).

    Google Scholar 

  142. Waters N. E. (1965) The indentation of thin rubber sheets by cylindrical indenters. Br. J. Appl. Physiol. 16, 1387–1392.

    Article  Google Scholar 

  143. Waters, N. E. (1965) The indentation of thin rubber sheets by spherical indenters. Br. J. Appl. Physiol. 16, 557–563.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Chen, A.C. et al. (2004). Mechanical Characterization of Native and Tissue-Engineered Cartilage. In: De Ceuninck, F., Sabatini, M., Pastoureau, P. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine, vol 101. Humana Press. https://doi.org/10.1385/1-59259-821-8:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-821-8:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-505-7

  • Online ISBN: 978-1-59259-821-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics