Pulsed-Field Gradient-Nuclear Magnetic Resonance (PFG NMR) to Measure the Diffusion of Ions and Polymers in Cartilage

Applications in Joint Diseases
  • Jürgen Schiller
  • Lama Naji
  • Robert Trampel
  • Wilfred Ngwa
  • Robert Knauss
  • Klaus Arnold
Part of the Methods in Molecular Medicine book series (MIMM, volume 101)

Abstract

Since cartilage contains neither blood nor lymph vessels, diffusion is the most important transport process for the supply of cartilage with nutrients and for the removal of metabolic waste products. Therefore, diffusion measurements are of high interest in cartilage research. Different techniques of diffusion measurements exist. Here we describe methods based on pulsed-field gradient nuclear magnetic resonance (PFG NMR). This technique offers the considerable advantage that neither concentration gradients nor labeling of the diffusing species are required. In addition to the description of the fundamentals and the applicability of PFG NMR studies in cartilage research, emphasis is on the influence of the observation time, Δ, on the diffusion coefficient, D: at short times, diffusion is primarily determined by the water content of the sample, and great care is needed to keep this parameter constant. However, by varying the diffusion time, data on the internal structure of cartilage, e.g., the distance of the collagen fibrils, can also be obtained. In addition to classical water diffusion, the diffusion behavior of selected ions and polymers in cartilage is described. The capabilities, the limitations, and the clinical relevance of diffusion measurements for the assessment of joint diseases are discussed.

Key Words

Cartilage PFG NMR diffusion restricted diffusion collagen swelling osmotic pressure water content polymer diffusion cation diffusion 

References

  1. 1.
    Maroudas, A. and Kuettner, K., eds. (1990) Methods in Cartilage Research. Academic, London.Google Scholar
  2. 2.
    Stryer, L., ed. (1987) Biochemie. Vieweg-Verlag, Braunschweig.Google Scholar
  3. 3.
    Maroudas, A. and Bannon, C. (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18, 619–632.PubMedGoogle Scholar
  4. 4.
    Freeman, M. A. R., ed. (1979) Adult Articular Cartilage. Pitman Medical, Turnbridge.Google Scholar
  5. 5.
    Flugge, L. A., Miller-Deist, L. A., and Petillo, P. A. (1999) Towards a molecular understanding of arthritis. Chem. Biol. 6, R157–R166.PubMedCrossRefGoogle Scholar
  6. 6.
    Knauss, R., Schiller, J., Fleischer, G., Kärger, J., and Arnold, K. (1999) Self-diffusion of water in cartilage and cartilage components as studied by pulsed field gradient NMR. Magn. Reson. Med. 41, 285–292.PubMedCrossRefGoogle Scholar
  7. 7.
    Maroudas, A., Weinberg, P. D., Parker, K. H., and Winlove, C. P. (1988) The distributions and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys. Chem. 32, 257–270.PubMedCrossRefGoogle Scholar
  8. 8.
    Callaghan, P. T., ed. (1991) Principles of Nuclear Magnetic Resonance Microscopy. Oxford Clarendon, Oxford.Google Scholar
  9. 9.
    Kärger, J., Heitjans, P., and Haberlandt, R. (1988) Diffusion in Condensed Matter. Vieweg Verlag, Braunschweig/Wiesbaden.Google Scholar
  10. 10.
    Stejskal, E. O. and Tanner, J. E. (1970) Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient. J. Chem. Phys. 52, 2523–2526.CrossRefGoogle Scholar
  11. 11.
    Farrar, T. C. and Becker, E. D., eds. (1971) Pulse and Fourier Transform NMR. Introduction to Theory and Methods. Academic, New York.Google Scholar
  12. 12.
    Kärger, J., Pfeifer, H., and Heink, W. (1988) Principles and applications of self-diffusion measurements by nuclear magnetic resonance, in Advances in Magnetic Resonance (Waugh, J. S., ed.), Academic, London, pp. 1–89.Google Scholar
  13. 13.
    Torchia, D. A., Hasson, M. A., and Hascall, V. C. (1977) Investigation of molecular motion of proteoglycans in cartilage by 13C magnetic resonance. J. Biol. Chem. 252, 3617–3625.PubMedGoogle Scholar
  14. 14.
    Schiller, J., Naji, L., Huster, D., Kaufmann, J., and Arnold, K. (2001) 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage. MAGMA 13, 19–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Henkelman, R. M., Stanisz, G. J., Kim, J. K., and Bronskill, M. J. (1994) Anisotropy of NMR properties of tissues. Magn. Reson. Med. 32, 592–601.PubMedCrossRefGoogle Scholar
  16. 16.
    Lüsse, S., Knauss, R., Werner, A., Gründer, W., and Arnold, K. (1995) Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn. Reson. Med. 33, 483-489.PubMedCrossRefGoogle Scholar
  17. 17.
    Gawrisch, K., Arnold, K., Dietze, K., and Schulze, U. (1988) Hydration forces between phospholipid membranes and the PEG-induced fudion, in Electromagnetic Fields and Biomembranes (Markov, M. and Blank, M., eds.), Plenum, New York, pp. 9–18.Google Scholar
  18. 18.
    Lesperance, L. M., Gray, M. L., and Burstein, D. (1992) Determination of fixed charged density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 10, 1–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Citterio, D., Minamihashi, K., Kuniyoshi, Y., Hisamoto, H., Sasaki, H., and Suzuki, K (2001) Optical determination of low-level water concentrations in organic solvents using fluorescent acridinyl dyes and dye-immobilized polymer membranes. Anal. Chem. 73, 5339–5345.PubMedCrossRefGoogle Scholar
  20. 20.
    Fukushima, E. and Roeder, S. W. (1981) Experimental Pulse NMR—A Nuts and Bolts Approach. Addison-Wesley, Reading, PA.Google Scholar
  21. 21.
    Braun, S., Kalinowski, H.-O., and Berger, S. (1998) 150 and More NMR Experiments. Wiley-VCH, Weinheim.Google Scholar
  22. 22.
    Burstein, D., Gray, M. L., Hartman, A. L., Ripe, G., and Foy, B. D. (1993) Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11, 465–478.PubMedCrossRefGoogle Scholar
  23. 23.
    Mackie, J. S. and Meares, P. (1955) The sorption of electrolytes by a cation exchange resin membrane. Proc. R. Soc. A 232, 485–498.CrossRefGoogle Scholar
  24. 24.
    Knauss, R., Fleischer, G., Gründer, W., Kärger, J., and Werner, A. (1996) Pulsed field gradient NMR and nuclear magnetic relaxation studies of water mobility in hydrated collagen II. Magn. Reson. Med. 36, 241–248.PubMedCrossRefGoogle Scholar
  25. 25.
    Xia, Y., Farquhar, T., Burton-Wurster, N., Ray, E., and Jelinski, L. W. (1994) Diffusion and relaxation mapping of cartilage-bone plugs excised discs using microscopic magnetic resonance imaging. Magn. Reson. Med. 31, 273–282.PubMedCrossRefGoogle Scholar
  26. 26.
    Xia, Y., Farquhar, T., Burton-Wurster, N., Vernier-Singer, M., Lust, G., and Jelinski, L. W. (1995) Self-diffusion monitors degraded cartilage. Arch. Biochem. Biophys. 23, 323–328.CrossRefGoogle Scholar
  27. 27.
    Naji, L., Trampel, R., Ngwa, W., Knauss, R., Schiller, J., and Arnold, K. (2001) Studium der Diffusion im Knorpel mit der PFG (pulsed-field gradient)-NMR-Technik. Z. Med. Phys. 11, 179–186.Google Scholar
  28. 28.
    Ngwa, W., Geier, F., Stallmach, F., Naji, L., Schiller, J., and Arnold, K. (2002) Cation diffusion in cartilage measured by pulsed field gradient NMR. Eur. Biophys. J. 31, 73–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Trampel, R., Schiller, J., Naji, L., Stallmach, F., Kärger, J., and Arnold, K. (2002) Self-diffusion of polymers in cartilage as studied by pulsed field gradient NMR. Biophys. Chem. 97, 251–260.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Jürgen Schiller
    • 1
  • Lama Naji
    • 2
  • Robert Trampel
    • 3
  • Wilfred Ngwa
    • 1
  • Robert Knauss
    • 1
  • Klaus Arnold
    • 4
  1. 1.Institute of Medical Physics and Biophysics, Medical FacultyUniversity of LeipzigLeipzigGermany
  2. 2.Department of Natural SciencesInstitute of Experimental PhysicsMagdeburgGermany
  3. 3.Max Planck Institute for Human Cognitive and Brain SciencesGermany
  4. 4.Institute of Medical Physics and Biophysics, Medical DepartmentUniversity of LeipzigLeipzigGermany

Personalised recommendations