Molecular and Biochemical Assays of Cartilage Components

  • Caroline D. Hoemann
Part of the Methods in Molecular Medicine book series (MIMM, volume 101)


The procedure described below is useful for extracting proteins, nucleic acids, and glycosaminoglycans from 5–40 mg of cartilage or tissue-engineered cartilage samples. This extraction method will generate samples compatible with Western blot, RNase protection, dimethyl methylene blue (DMB) assay for glycosaminoglycan, Hoechst DNA assay, and hydroxyproline assay. Most soluble matrix molecules can be extracted from pulverized samples using 4 M guanidine HCl, during a 30-min period of vortex agitation at 4°C. Shorter agitation times can give inadequate solubilization. The guanidine HCl-insoluble pellet must be re-extracted with guanidine thiocyanate buffer, to solubilize RNA additionally. The final insoluble pellet can be rinsed with ethanol and digested with papain, to quantify collagen content as well as other insoluble or crosslinked material. Samples between 1 and 5 mg may be directly digested with a small volume of papain buffer for DMB, hydroxyproline, and Hoechst DNA assays.

Key Words

Papain hydrogel L-trans-hydroxyproline collagen glycosaminoglycan deoxyribonucleic acid chondroitin sulfate C standard curve plate reader fluorimeter Hoechst 33258 pulverize guanidine hydrochloride guanidine thiocyanate cartilage. Extraction 


  1. 1.
    Farndale, R. W., Buttle, D. J., and Barrett, A. J. (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochem. Biophys. Acta 883, 173–177.PubMedGoogle Scholar
  2. 2.
    Kim Y._ J., Sah, R. L., Doong, J.-Y. H., and Grodzinsky, A. J. (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176.PubMedCrossRefGoogle Scholar
  3. 3.
    Farndale, R. W., Sayers, C. A., and Barrett, A. J. (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9, 247–248.PubMedCrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, S., Esterman, M. A., and Hoffman, H. A. (1987) Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal. Biochem. 161, 103–108.PubMedCrossRefGoogle Scholar
  5. 5.
    Stegemann, H. and Stalder, K. (1967) Determination of hydroxyproline. Clin. Chim. Acta 18, 267–273.PubMedCrossRefGoogle Scholar
  6. 6.
    Woessner, J. F. (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93, 440–447.PubMedCrossRefGoogle Scholar
  7. 7.
    Burleigh, M. C., Barrett, A. J., and Lazarus, G. S. (1974) A lysosomal enzyme that degrades native collagen. Biochem. J. 137, 387–398.PubMedGoogle Scholar
  8. 8.
    Chomczynski, P. and Mackey, K. (1995) Modification of the tri reagent procedure for isolation of RNA from polysaccharide-and proteoglycan-rich sources. Biotechniques 19, 942–945.PubMedGoogle Scholar
  9. 9.
    Haines, D. S. and Gillespie, D. H. (1992) RNA abundance measured by a lysate RNase protection assay. Biotechniques 12, 736–741.PubMedGoogle Scholar
  10. 10.
    Binette, F., McQuaid, D. P., Haudenschild, D. R., Yaeger, P. C., McPherson, J. M., and Tubo, R. (1998) Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J. Orthop. Res. 16L, 207–216.CrossRefGoogle Scholar
  11. 11.
    Hoemann, C. H., Sun, J., Chrzanowski, V., and Buschmann, M. D. (2002) A multivalent assay to detect DNA, RNA, glycosaminoglycan, protein, and collagen content of milligram samples of cartilage or chondrocytes grown in chitosan hydrogel. Anal. Biochem. 300, 1–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Gehrsitz, A., McKenna, L. A., Soder S., Kirchner, T., and Aigner T. (2002) Isolation of RNA from small human articular cartilage specimens allows quantification of mRNA expression levels in local articular cartilage defects. J. Orthop. Res. 19, 478–481.CrossRefGoogle Scholar
  13. 13.
    Matyas, J. R., Huang, D., Chung, M., and Adams, M. E. (2002) Regional quantification of cartilage type II collagen and aggrecan mRNA in joints with early experimental osteoarthritis. Arthritis Rheum. 46, 1536–1543.PubMedCrossRefGoogle Scholar
  14. 14.
    Bluteau, G., Gouttenoire, J., Conrozier, T., et al. (2002) Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL) section. Biorheology 39, 247–258.PubMedGoogle Scholar
  15. 15.
    Langelier, A., Suetterlin, R., Hoemann, C. D., Aebi, U., and Buschmann, M. D. (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin and vimentin filaments. J. Histochem. Cytochem. 48, 1307–1320.PubMedGoogle Scholar
  16. 16.
    Sajdera, S. W. and Hascall, V. C. (1969) Proteinpolysaccharide complex from bovine nasal cartilage. J. Biol. Chem. 244, 77–87.PubMedGoogle Scholar
  17. 17.
    Heinegard, D. and Sommarin, Y. (1987) Isolation and characterization of proteoglycans. Methods Enzymol. 144, 319–372.PubMedCrossRefGoogle Scholar
  18. 18.
    Mankin, H. J. and Lippiello, L. (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Joint Surg. Am. 52, 424–434.PubMedGoogle Scholar
  19. 19.
    Kempson, G. E., Muir, H., Swanson, S. A. V., and Freeman, M. A. R. (1970) Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochem. Biophys. Acta. 215, 70–77.PubMedGoogle Scholar
  20. 20.
    Venn, M. and Maroudas, A. (1977) Chemical composition and swelling of normal and osteoarthritic femoral head cartilage. Ann. Rheum. Dis. 36, 121–129.PubMedCrossRefGoogle Scholar
  21. 21.
    Amiel, D., Coutts, R. D., Harwood, F. L., Ishizue, K. K., and Kleiner, J. B. (1988) The chondrogenesis of rib perichondrial grafts for repair of full thickness articular cartilage defects in a rabbit model: a one year postoperative assessment. Connect. Tissue Res. 18, 27–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Richardson, D. W. and Clark, C. C. (1990) Biochemical changes in articular cartilage opposing full-and partial-thickness cartilage lesions in horses. Am. J. Vet. Res. 51, 118–122.PubMedGoogle Scholar
  23. 23.
    Vachon, A. M., McIlwraith, C. W., and Keeley, F. W. (1991) Biochemical study of repair of induced osteochondral defects of the distal portion of the radial carpal bone in horses by use of periosteal autografts. Am. J. Vet. Res. 52, 328–332.PubMedGoogle Scholar
  24. 24.
    Brama, P. A., Tekoppele, J. M., Bank, R. A., Barneveld, A., and VanWeeren, P. R. (2000) Functional adaptation of equine articular cartilage: the formation of regional biochemical characteristics up to age one year. Equine Vet. J. 32, 217–221.PubMedCrossRefGoogle Scholar
  25. 25.
    Burkhardt, D., Hwa, S. Y., and Ghosh, P. (2001) A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: its application to determine the effects of diacerhein on cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 9, 238–247.PubMedCrossRefGoogle Scholar
  26. 26.
    Murray, R. C., Birch, H. L., Lakhani, K., and Goodship, A. E. (2001) Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner. J. Orthop. Res. 19, 1035–1042.PubMedCrossRefGoogle Scholar
  27. 27.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H., and Hunziker, E. B. (1992) Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758.PubMedCrossRefGoogle Scholar
  28. 28.
    Eggli, P. S., Hunziker, E. B., and Schenk, R. K. (1988) Quantitation of structural features characterizing weight-and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat. Rec. 222, 217–227.PubMedCrossRefGoogle Scholar
  29. 29.
    Sah, R. L., Yang, A. S., Chen, A. C., et al. (1997) Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J. Orthop. Res. 15, 197–203.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, C. R., Grodzinsky, A. J., Hsu, H. P., Martin, S. D., and Spector, M. (2000) Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J. Orthop. Res. 18, 790–799.PubMedCrossRefGoogle Scholar
  31. 31.
    Treppo, S., Koepp, H., Quan, E. C., Cole, A. A., Kuettner, K. E., and Grodzinsky, A. J. (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18, 739–748.PubMedCrossRefGoogle Scholar
  32. 32.
    Dumont, J., Ionescu, M, Reiner A., et al. (1999) Mature full-thickness articular cartilage explants attached to bone are physiologically stable over long-term culture in serum-free media. Connect. Tissue Res. 40, 259–272.PubMedCrossRefGoogle Scholar
  33. 33.
    Ameer, G. A., Mahmood, T. A., and Langer, R. (2002) A biodegradable composite scaffold for cell transplantation. J. Orthop. Res. 20, 16–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Hunziker, E. B., Quinn, T. M., and Hauselmann, H. J. (2002) Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10, 564–572.PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis, R. J., MacFarland, A. K., Anandavijayan, S., and Aspden, R. M. (1988) Material properties and biosynthetic activity of articular cartilage from the bovine carpo-metacarpal joint. Osteoarthritis Cartilage 6, 383–392.CrossRefGoogle Scholar
  36. 36.
    Mankin, H. J. (1974) The reaction of articular cartilage to injury and osteoarthritis (Second of Two Parts). N. Engl. J. Med. 291, 1335–1340.PubMedCrossRefGoogle Scholar
  37. 37.
    Mow, V. C., Ratcliffe, A., and Poole A. R. (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13, 67–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Maroudas, A. (1990) Different ways of expressing concentration of cartilage constituents with special reference to the tissue’s organization and functional properties, in Methods in Cartilage Research (Maroudas, A. and Kuettner, K. E., eds.), Academic, London, pp. 211–219.Google Scholar
  39. 39.
    Eyre, D. (2001) Collagen of articular cartilage. Arthritis Res. 4, 30–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Page Thomas, D. P., King B., Stephens, T., and Dingle, J. T. (1991) In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann. Rheum. Dis. 50, 75–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Richardson, D. W. and Clark, C. C. (1990) Biochemical changes in articular cartilage opposing full-and partial-thickness cartilage lesions in horses. Am. J. Vet. Res. 51, 118–122.PubMedGoogle Scholar
  42. 42.
    Verbruggen, G., Cornelissen, M., Almqvist, K. F., et al. (2000) Influence of aging on the synthesis and morphology of the aggrecans synthesized by differentiated human articular chondrocytes. Osteoarthritis Cartilage 8, 170–179.PubMedCrossRefGoogle Scholar
  43. 43.
    Front, P. Aprile, F., Mitrovic, D. R., and Swann, D. A. (1989) Age-related changes in the synthesis of matrix macromolecules by bovine articular cartilage. Connect. Tissue Res. 19, 121–133.PubMedCrossRefGoogle Scholar
  44. 44.
    Sims, C. D., Butler, P. E. M., Cao, Y. L., et al. (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast. Reconst. Surg. 101, 1580–1585.PubMedCrossRefGoogle Scholar
  45. 45.
    Riesle, J., Hollander, A. P., Langer, R., Freed, L. E., and Vunjak-Novakovic, G. (1998) Collagen in tissue-engineered cartilage: types, structure, and crosslinks J. Cell. Biochem. 71, 313–327.PubMedCrossRefGoogle Scholar
  46. 46.
    Hollander, A. P., Heathfield, T. F., Webber, C., et al. (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93, 1722–1732.PubMedCrossRefGoogle Scholar
  47. 47.
    Stone, J., Akhtar, H., Botchway, S., and Pennock, C. A. (1994) Interaction of 1,9-dimethylmethylene blue with glycosaminoglycans. Ann. Clin. Biochem. 31, 147–152.PubMedGoogle Scholar
  48. 48.
    Vunjak-Novakovic, G., Martin, I., Obradovic, B., et al. (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17, 130–138.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoemann, C. D., Sun, J., Légaré, A., McKee, M. D., and Buschmann, M. D. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Submitted.Google Scholar
  50. 50.
    Obradovic, B., Carrier, R. L., Vunjak-Novakovic, G., and Freed, L. E. (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63, 197–205.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu, F., Dunkelman, N., Peterson, A., Davisson, T., De La Torre, R., and Jain, D. (1999) Bioreactor development for tissue-engineered cartilage. Ann. NY Acad. Sci. 875, 405–411.PubMedCrossRefGoogle Scholar
  52. 52.
    Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R., and Manji, R. (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 34, 211–220.PubMedCrossRefGoogle Scholar
  53. 53.
    Yu, H., Grynpas, M., and Kandel, R. A. (1997) Composition of cartilagenous tissue with mineralized and non-mineralized zones formed in vitro. Biomaterials 18, 1425–1431.PubMedCrossRefGoogle Scholar
  54. 54.
    Sun, Y., Hurtig, M., Pilliar, R. M., Grynpas, M., and Kandel, R. A. (2001) Characterization of nucleus pulposus-like tissue formed in vitro. J. Orthop. Res. 19, 1078–1084.PubMedCrossRefGoogle Scholar
  55. 55.
    Nehrer, S., Breinan, H. A., Ramappa, A., et al. (1997) Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J. Biomed. Mater. Res. 38, 95–104.PubMedCrossRefGoogle Scholar
  56. 56.
    Toolan, B. C., Frenkel, S. R., Pachence, J. M., Yalowitz, L., and Alexander, H. (1996) Effects of growth-factor enhanced culture on a chondrocyte-collagen implant for cartilage repair. J. Biomed. Mater. Res. 31, 273–280.PubMedCrossRefGoogle Scholar
  57. 57.
    Bryant, S. J. and Anseth, K. S. (2001) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72.CrossRefGoogle Scholar
  58. 58.
    Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., and Grodzinsky, A. J. (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc. Natl. Acad. Sci. USA 99, 9996–10001.PubMedCrossRefGoogle Scholar
  59. 59.
    Wong, M., Siegrist, M., Wang, X., and Hunziker, E. (2001) Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J. Orthop. Res. 19, 493–499.PubMedCrossRefGoogle Scholar
  60. 60.
    Passaretti, D., Silverman, R. P., Huang, W., et al. (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng. 7, 805–815.PubMedCrossRefGoogle Scholar
  61. 61.
    Elisseeff, J., Anseth, K., Sims, D., et al. (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast. Reconstr. Surg. 104, 1014–1022.PubMedCrossRefGoogle Scholar
  62. 62.
    Oegema, T. R., Carpenter, B. J., and Thompson, R. C. (1984) Fluorometric determination of DNA in cartilage of various species. J. Orthop. Res. 1, 345–351.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Caroline D. Hoemann
    • 1
  1. 1.Department of Chemical EngineeringÉcole Polytechnique de MontréalMontréalCanada

Personalised recommendations