Skip to main content

Techniques in Protein Methylation

  • Protocol
Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 284))

Abstract

Proteins can be methylated on the side-chain nitrogens of arginine and lysine residues or on carboxy-termini. Protein methylation is a way of subtly changing the primary sequence of a peptide so that it can encode more information. This common posttranslational modification is implicated in the regulation of a variety of processes including protein trafficking, transcription and protein-protein interactions. In this chapter, we will use the arginine methyltransferases to illustrate different approaches that have been developed to assess protein methylation. Both in vivo and in vitro methylation techniques are described, and the use of small molecule inhibitors of protein methylation will be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 115.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aletta, J. M., Cimato, T. R., and Ettinger, M. J. (1998) Protein methylation: a signal event in post-translational modification. Trends Biochem. Sci. 23, 89–91.

    Article  PubMed  CAS  Google Scholar 

  2. Comb, D. G., Sarkar, N., and Pinzino, C. J. (1966) The methylation of lysine residues in protein. J. Biol. Chem. 241, 1857–1862.

    PubMed  CAS  Google Scholar 

  3. Paik, W. K. and Kim, S. (1968) Protein methylase I. Purification and properties of the enzyme. J. Biol. Chem. 243, 2108–2114.

    PubMed  CAS  Google Scholar 

  4. Mowen, K. A., Tang, J., Zhu, W., et al. (2001) Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104, 731–741.

    Article  PubMed  CAS  Google Scholar 

  5. Abramovich, C., Yakobson, B., Chebath, J., and Revel, M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 16, 260–266.

    Article  PubMed  CAS  Google Scholar 

  6. Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  7. McBride, A. E. and Silver, P. A. (2001) State of the arg: protein methylation at arginine comes of age. Cell 106, 5–8.

    Article  PubMed  CAS  Google Scholar 

  8. Friesen, W. J., Massenet, S., Paushkin, S., et al. (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol. Cell 7, 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  9. Brahms, H., Meheus, L., de Brabandere, V., et al. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531–1542.

    Article  PubMed  CAS  Google Scholar 

  10. Bedford, M. T., Frankel, A., Yaffe, M. B., et al. (2000) Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem. 275, 16,030–16,036.

    Article  PubMed  CAS  Google Scholar 

  11. Gary, J. D. and Clarke, S. (1998) RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol. Biol. 61, 65–131.

    Article  PubMed  CAS  Google Scholar 

  12. Frankel, A., Yadav, N., Lee, J., et al. (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277, 3537–3543.

    Article  PubMed  CAS  Google Scholar 

  13. Lin, W. J., Gary, J. D., Yang, M. C., et al. (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271, 15,034–15,044.

    Article  PubMed  CAS  Google Scholar 

  14. Scott, H. S., Antonarakis, S. E., Lalioti, M. D., et al. (1998) Identification and characterization of two putative human arginine methyltransferases (HRMT1L1 and HRMT1L2). Genomics 48, 330–340.

    Article  PubMed  CAS  Google Scholar 

  15. Tang, J., Gary, J. D., Clarke, S., and Herschman, H. R. (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem. 273, 16,935–16,945.

    Article  PubMed  CAS  Google Scholar 

  16. Chen, D., Ma, H., Hong, H., et al. (1999) Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177.

    Article  PubMed  CAS  Google Scholar 

  17. Branscombe, T. L., Frankel, A., Lee, J. H., et al. (2001) Prmt5 (janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32,971–32,976.

    Article  PubMed  CAS  Google Scholar 

  18. Rea, S., Eisenhaber, F., O’Carroll, D., et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.

    Article  PubMed  CAS  Google Scholar 

  19. Santos-Rosa, H., Schneider R., Bannister A. J., et al. (2002) Active genes are trimethylated at K4 of histone H3. Nature 419, 407–411.

    Article  PubMed  CAS  Google Scholar 

  20. Gary, J. D. and Clarke, S. (1995) Purification and characterization of an isoaspartyl dipeptidase from Escherichia coli. J. Biol. Chem. 270, 4076–4087.

    Article  PubMed  CAS  Google Scholar 

  21. Chevillard-Briet, M., Trouche, D., and Vandel, L. (2002) Control of CBP co-activating activity by arginine methylation. EMBO J 21, 5457–5466.

    Article  PubMed  CAS  Google Scholar 

  22. Li, H., Park S., Kilburn B., et al. (2002) Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J. Biol. Chem. 277, 44,623–44,630.

    Article  PubMed  CAS  Google Scholar 

  23. Sommer, A., Moscatelli, D., and Rifkin, D. B. (1989) An amino-terminally extended and post-translationally modified form of a 25kD basic fibroblast growth factor. Biochem. Biophys. Res. Commun. 160, 1267–1274.

    Article  PubMed  CAS  Google Scholar 

  24. Baldwin, G. S. and Carnegie, P. R. (1971) Isolation and partial characterization of methylated arginines from the encephalitogenic basic protein of myelin. Biochem. J. 123, 69–74.

    PubMed  CAS  Google Scholar 

  25. Lee, J. and Bedford, M. T. (2002) PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep. 3, 268–273.

    Article  PubMed  CAS  Google Scholar 

  26. Davie, J. K. and Dent, S. Y. (2002) Transcriptional control: an activating role for arginine methylation. Curr. Biol. 12, R59–R61.

    Article  PubMed  CAS  Google Scholar 

  27. Lachner, M., O’Sullivan, R. J., and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  28. Coppard, N. J., Clark, B. F., and Cramer, F. (1983) Methylation of elongation factor 1 alpha in mouse 3T3B and 3T3B/SV40 cells. FEBS Lett. 164, 330–334.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, Q. and Dreyfuss, G. (1995) In vivo and in vitro arginine methylation of RNA-binding proteins. Mol. Cell Biol. 15, 2800–2808.

    PubMed  CAS  Google Scholar 

  30. Frankel, A. and Clarke, S. (1999) RNase treatment of yeast and mammalian cell extracts affects in vitro substrate methylation by type I protein arginine N-methyltransferases. Biochem. Biophys. Res. Commun. 259, 391–400.

    Article  PubMed  CAS  Google Scholar 

  31. Cote, J., Boisvert, F. M., Boulanger, M. C., et al. (2003) Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol. Biol. Cell 14, 274–287.

    Article  PubMed  CAS  Google Scholar 

  32. Yadav, N., Lee, J., Kim, J., et al. (2003) Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci. USA 100, 6464–6468.

    Article  PubMed  CAS  Google Scholar 

  33. Henry, M. F. and Silver, P. A. (1996) A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins. Mol. Cell Biol. 16, 3668–3678.

    PubMed  CAS  Google Scholar 

  34. Siebel, C. W. and Guthrie, C. (1996) The essential yeast RNA binding protein Np13p is methylated. Proc. Natl. Acad. Sci. USA 93, 13,641–13,646.

    Article  PubMed  CAS  Google Scholar 

  35. Bannister, A. J., Schneider, R., and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109, 801–806.

    Article  PubMed  CAS  Google Scholar 

  36. Najbauer, J. and Aswad, D. W. (1990) Diversity of methyl acceptor proteins in rat pheochromocytoma (PC12) cells revealed after treatment with adenosine dialdehyde. J. Biol. Chem. 265, 12,717–12,721.

    PubMed  CAS  Google Scholar 

  37. Frankel, A. and Clarke, S. (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J. Biol. Chem. 275, 32,974–32,982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lee, J., Cheng, D., Bedford, M.T. (2004). Techniques in Protein Methylation. In: Dickson, R.C., Mendenhall, M.D. (eds) Signal Transduction Protocols. Methods in Molecular Biology, vol 284. Humana Press. https://doi.org/10.1385/1-59259-816-1:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-816-1:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-245-2

  • Online ISBN: 978-1-59259-816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics