Skip to main content

Nucleocytoplasmic Glycosylation, O-GlcNAc

Identification and Site Mapping

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 284))

Abstract

β-O-linked N-acetylglucosamine (O-GlcNAc) is posttranslationally added to serine and threonine residues of many nuclear and cytoplasmic proteins found in metazoans. This modification is dynamic and responsive to numerous stimuli and conditions, suggesting an important role in many regulatory pathways. Moreover, the O-GlcNAc modification seems to compete with phosphorylation for sites of attachment, indicating a reciprocal relationship with phosphorylation. This chapter includes protocols for: (1) identifying the O-GlcNAc modification on proteins through immunoblotting, lectin affinity chromatography, and galactosyltransferase labeling; and (2) identifying and enriching for the sites of attachment using the mass spectrometry-based β-elimination followed by Michael addition with dithiothreitol (BEMAD) technique.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   115.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wells, L., Vosseller, K., and Hart, G. W. (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378.

    Article  PubMed  CAS  Google Scholar 

  2. Zachara, N. E. and Hart, G. W. (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem. Rev. 102, 431–438.

    Article  PubMed  CAS  Google Scholar 

  3. Griffith L. S. and Schmitz, B. (1999) O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. Eur. J. Biochem. 262, 824–831.

    Article  PubMed  CAS  Google Scholar 

  4. Lefebvre, T., Alonso, C., Mahboub, S., et al. (1999) Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. Biochim. Biophys. Acta 1472, 71–81.

    PubMed  CAS  Google Scholar 

  5. Roquemore, E. P., Chou, T. Y., and Hart G. W. (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol. 230, 443–460

    Article  PubMed  CAS  Google Scholar 

  6. Greis, K. D., Hayes B. K., Comer, F. I., et al. (1996) Selective detection and site-analysis of O-GlcNAc modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38–49.

    Article  PubMed  CAS  Google Scholar 

  7. Greis, K. D. and Hart, G. W. (1998) Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. Methods Mol. Biol. 76, 19–33.

    PubMed  CAS  Google Scholar 

  8. Torres, C. R. and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317.

    PubMed  CAS  Google Scholar 

  9. Snow, C. M., Senior, A., and Gerace, L. (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J. Cell Biol. 104, 1143–1156.

    Article  PubMed  CAS  Google Scholar 

  10. Turner, J. R., Tartakoff, A. M., and Greenspan, N. S. (1990) Cytologic assessment of nuclear and cytoplasmic O-linked N-acetylglucosamine distribution by using antistreptococcal monoclonal antibodies. Proc. Natl. Acad. Sci. USA 87, 5608–5612.

    Article  PubMed  CAS  Google Scholar 

  11. Holt, G. D., Snow, C. M., Senior, A., et al. (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J. Cell Biol. 104, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  12. Comer, F. I., Vosseller, K., Wells, R. L., et al. (2001) Characterization of a mouse monoclonal antibody specific for O-Linked GlcNAc. Anal. Biochem. 293, 169–177.

    Article  PubMed  CAS  Google Scholar 

  13. Matsuoka, Y., Shibata, S., et al. (2002) Identification of Ewing’s sarcoma gene product as a glycoprotein using a monoclonal antibody that recognizes an immunodeterminant containing O-linked N-acetylglucosamine moiety. Hybrid. Hybridomics 21, 233–236.

    Article  PubMed  CAS  Google Scholar 

  14. Haltiwanger, R. S., Blomberg, M. A., and Hart, G. W. (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine: polypeptide β-N-acetylglucosaminyltransferase J. Biol. Chem. 267, 9005–9013.

    PubMed  CAS  Google Scholar 

  15. Fukuda, M. (1990) Characterization of O-linked saccharide structures from cell surface glycoproteins. Methods Enzymol. 179, 17–29.

    Article  Google Scholar 

  16. Kobata, A. (1994) Size fractionation of oligosaccharides. Methods Enzymol. 230, 200–208.

    Article  PubMed  CAS  Google Scholar 

  17. Townsend, R. R., Hardy, M. R., and Lee, Y. C. (1990) Separation of oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection. Methods Enzymol. 179, 65–76.

    Article  Google Scholar 

  18. Hardy, M. R. and Townsend, R. R. (1994) High-pH anion exchange chromatography of glycoprotein-derived carbohydrates. Methods Enzymol. 230, 208–225.

    Article  PubMed  CAS  Google Scholar 

  19. Dong, D. L.-Y. and Hart, G. W. (1994) Purification and characterization of an O-GlcNAc selective N-Acety-β-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19,321–19,330.

    PubMed  CAS  Google Scholar 

  20. Haltiwanger, R. S., Grove, K., and Philipsberg, G. A. (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J. Biol. Chem. 273, 3611–3617.

    Article  PubMed  CAS  Google Scholar 

  21. Zachara, N. E. and Gooley, A. A. (2000) Identification of glycosylation sites in much peptides by edman degradation. Methods Mol. Biol. 125, 121–128.

    PubMed  CAS  Google Scholar 

  22. Hart, G. W., Cole, R. N., Kreppel, L. K., et al. (2000) Glycosylation of proteins-a major challenge in mass spectrometry and proteomics, in Proceedings of the 4th International Symposium on Mass Spectrometry in the Health and Life Sciences (Burlingame, A., Carr, S., and Baldwin, M., eds.), Humana Press, Totowa, NJ, pp. 365–382.

    Google Scholar 

  23. Wells, L., Vosseller, K., Cole, R. N., et al. (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell Proteomics 1, 791–804.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zachara, N.E., Cheung, W.D., Hart, G.W. (2004). Nucleocytoplasmic Glycosylation, O-GlcNAc. In: Dickson, R.C., Mendenhall, M.D. (eds) Signal Transduction Protocols. Methods in Molecular Biology, vol 284. Humana Press. https://doi.org/10.1385/1-59259-816-1:175

Download citation

  • DOI: https://doi.org/10.1385/1-59259-816-1:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-245-2

  • Online ISBN: 978-1-59259-816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics