Measurement of Protein-DNA Interactions In Vivo by Chromatin Immunoprecipitation

  • Hogune Im
  • Jeffrey A. Grass
  • Kirby D. Johnson
  • Meghan E. Boyer
  • Jing Wu
  • Emery H. Bresnick
Part of the Methods in Molecular Biology book series (MIMB, volume 284)

Abstract

Elucidating mechanisms controlling nuclear processes requires an understanding of the nucleoprotein structure of genes at endogenous chromosomal loci. Traditional approaches to measuring protein-DNA interactions in vitro have often failed to provide insights into physiological mechanisms. Given that most transcription factors interact with simple DNA sequence motifs, which are abundantly distributed throughout a genome, it is essential to pinpoint the small subset of sites bound by factors in vivo. Signaling mechanisms induce the assembly and modulation of complex patterns of histone acetylation, methylation, phosphorylation, and ubiquitination, which are crucial determinants of chromatin accessibility. These seemingly complex issues can be directly addressed by a powerful methodology termed the chromatin immunoprecipitation (ChIP) assay. ChIP analysis involves covalently trapping endogenous proteins at chromatin sites, thereby yielding snapshots of protein-DNA interactions and histone modifications within living cells. The chromatin is sonicated to generate small fragments, and an immunoprecipitation is conducted with an antibody against the desired factor or histone modification. Crosslinks are reversed, and polymerase chain reaction (PCR) is used to assess whether DNA sequences are recovered immune-specifically. Chromatin-domain scanning coupled with quantitative analysis is a powerful means of dissecting mechanisms by which signaling pathways target genes within a complex genome.

Key Words

Chromatin histone immunoprecipitation DNA transcription crosslink 

References

  1. 1.
    von Hippel, P. H. and McGhee, J. D. (1972) DNA-protein interactions. Ann. Rev. Biochem. 41, 231–300.CrossRefGoogle Scholar
  2. 2.
    Woodbury, C. P. and von Hippel, P. H. (1983) On the determination of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay. Biochem. 22, 4730–4737.CrossRefGoogle Scholar
  3. 3.
    Garner, M. M. and Revzin, A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3060.PubMedCrossRefGoogle Scholar
  4. 4.
    Galas, D. J. and Schmitz, A. (1978) DNaseI footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170.PubMedCrossRefGoogle Scholar
  5. 5.
    Felsenfeld, G. (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355, 219–224.PubMedCrossRefGoogle Scholar
  6. 6.
    Hager, G. L., Archer, T. K., Fragoso, G., et al. (1993) Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harb. Symp. Quant. Biol. 58, 63–71.PubMedGoogle Scholar
  7. 7.
    Wolffe, A. P. (1994) Transcription: in tune with the histones. Cell 77, 13–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Weinmann, A. S., Bartley, S. M., Zhang, T., et al. (2000) Use of chromatin immunoprecipitation to clone novel e2f target promoters. Mol. Cell Biol. 21, 6820–6832.CrossRefGoogle Scholar
  9. 9.
    Boyd, K. E. and Farnham, P. J. (1997) Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol. Cell Biol. 17, 2529–2537.PubMedGoogle Scholar
  10. 10.
    Boyd, K. E., Wells, J., Gutman, J., et al. (1998) c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc. Natl. Acad. Sci. USA. 95, 13,887–13,892.PubMedCrossRefGoogle Scholar
  11. 11.
    Cordingley, M. G., Riegel, A. T., and Hager, G. L. (1987) Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48, 261–270.PubMedCrossRefGoogle Scholar
  12. 12.
    Cordingley, M. G. and Hager, G. L. (1988) Binding of multiple factors to the MMTV promoter in crude and fractionated nuclear extracts. Nucleic Acids Res. 16, 609–628.PubMedCrossRefGoogle Scholar
  13. 13.
    Nick, H. and Gilbert, W. (1985) Detection in vivo of protein-DNA interactions within the lac operon of Escherichia coli. Nature 313, 795–798.PubMedCrossRefGoogle Scholar
  14. 14.
    Mueller, P. R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.PubMedCrossRefGoogle Scholar
  15. 15.
    Strauss, E. C. and Orkin, S. H. (1992) In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. Proc. Natl. Acad. Sci. USA. 89, 5809–5813.PubMedCrossRefGoogle Scholar
  16. 16.
    Tanguay, R. L., Preifer, G. P., and Riggs, A. D. (1990) PCR-aided DNaseI footprinting of single copy gene sequences in permeabilized cells. Nucleic Acids Res. 18, 5902.PubMedCrossRefGoogle Scholar
  17. 17.
    Bresnick, E. H., Bustin, M., Marsaud, V., et al. (1992) The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20, 273–278.PubMedCrossRefGoogle Scholar
  18. 18.
    Stefanovsky, V., Dimitrov, S. I., Angelov, D., and Pashev, I. G. (1989) Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking. Biochem. Biophys. Res. Commun. 164, 304–310.PubMedCrossRefGoogle Scholar
  19. 19.
    Nacheva, G. A., Guschin, D. Y., Preobrazhenskaya, O. V., et al. (1989) Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58, 27–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Postnikov, Y. V., Shick, V. V., Belyavsky, A. V., et al. (1991) Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. Nucleic Acids Res. 19, 717–725.PubMedCrossRefGoogle Scholar
  21. 21.
    Solomon, M. J., Larsen, P. L., and Varshavsky, A. (1988). Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947.PubMedCrossRefGoogle Scholar
  22. 22.
    Dedon, P. C., Soults, J. A., Allis, C. D., and Gorovsky, M. A. (1991) Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol. Cell Biol. 11, 1729–1733.PubMedGoogle Scholar
  23. 23.
    Johnson, K. D. and Bresnick, E. H. (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26, 27–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Forsberg, E. C., Downs, K. M., and Bresnick, E. H. (2000) Direct interaction of NF-E2 with hypersensitive site 2 of the beta-globin locus control region in living cells. Blood 96, 334–339.PubMedGoogle Scholar
  25. 25.
    Forsberg, E. C., Downs, K. M., Christensen, H. M., et al. (2000) Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc. Natl. Acad. Sci. USA. 97, 14,494–14,499.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson, K. D., Grass, J. D., Boyer, M. E., et al. (2002) Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proc. Natl. Acad. Sci. USA 99, 11,760–11,765.PubMedCrossRefGoogle Scholar
  27. 27.
    Kiekhaefer, C. M., Grass, J. A., Johnson, K. D., et al. (2002) Hematopoietic activators establish an overlapping pattern of histone acetylation and methylation within a tissue-specific chromatin domain. Proc. Natl. Acad. Sci. USA 99, 14,309–14,314.PubMedCrossRefGoogle Scholar
  28. 28.
    Grass, J. A., Boyer, M. E., Paul, S., et al. (2003) GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. USA 100, 8811–8816.PubMedCrossRefGoogle Scholar
  29. 29.
    Merika, M. and Orkin, S. H. (1993) DNA-binding specificity of GATA family transcription factors. Mol. Cell Biol. 13, 3999–4010.PubMedGoogle Scholar
  30. 30.
    Ko, L. J. and Engel, J. D. (1993) DNA-binding specificities of the GATA transcription factor family. Mol. Cell Biol. 13, 4011–4022.PubMedGoogle Scholar
  31. 31.
    Grass, J. A., Boyer, M. E., Paul, S., et al. et al. (2003) GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. USA 100, 8811–8816.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, T. I., Rinaldi, N. J., Robert, F., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.PubMedCrossRefGoogle Scholar
  33. 33.
    Weinmann, A. S., Yan, P. S., Oberley, M. J., et al. (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16, 235–244.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Hogune Im
    • 1
  • Jeffrey A. Grass
    • 1
  • Kirby D. Johnson
    • 1
  • Meghan E. Boyer
    • 1
  • Jing Wu
    • 1
  • Emery H. Bresnick
    • 1
  1. 1.Department of Pharmacology, Molecular and Cellular Pharmacology ProgramUniversity of Wisconsin Medical SchoolMadison

Personalised recommendations