Skip to main content

Biofunctionalization of Carbon Nanotubes for Atomic Force Microscopy Imaging

  • Protocol
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 283))

  • 1503 Accesses

Abstract

The study of biological processes relies increasingly on methods for probing structure and function of biochemical machinery (proteins, nucleic acids, and so on) with submolecular resolution. Atomic force microscopy (AFM) has recently emerged as a promising approach for imaging biological structures with resolution approaching the nanometer scale. Two important limitations of AFM in biological imaging are (1) resolution is constrained by probe tip dimensions, and (2) typical probe tips lack chemical specificity to differentiate between functional groups in biological structures. Single-walled carbon nanotubes (SWNTs) offer an intriguing possibility for providing both high resolution and chemical selectivity in AFM imaging, thus overcoming the enumerated limitations. Procedures for generating SWNT tips for AFM will be described. Carboxylic acid functional groups at the SWNT ends can be functionalized using covalent coupling chemistry to attach biological moieties via primary amine groups. Herein, the focus will be on describing methods for attaching biotin to SWNT tips and probing streptavidin on surfaces; importantly, this same coupling chemistry can also be applied to other biomolecules possessing primary amine groups. Underivatized SWNT tips can also provide high-resolution AFM images of DNA. Biofunctionalization of SWNT AFM tips offers great potential to enable high-resolution, chemically selective imaging of biological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glusker, J. P. (1994) X-ray crystallography of proteins. Meth. Biochem. Anal. 37, 1–72.

    Article  CAS  Google Scholar 

  2. Harris, K. D. M., Tremayne, M., and Kariuki, B. M. (2001) Contemporary advances in the use of powder x-ray diffraction for structure determination. Angew. Chem. Int. Ed. 40, 1626–1651.

    Article  CAS  Google Scholar 

  3. Wagner, G., Hyberts, S. G., and Havel, T. F. (1992) NMR structure determination in solution: a critique and comparison with x-ray crystallography. Annu. Rev. Biophys. Biomol. Struct. 21, 167–198.

    Article  PubMed  CAS  Google Scholar 

  4. Staunton, D., Owen, J., and Campbell, I. D. (2003) NMR and structural genomics. Acc. Chem. Res. 36, 207–214.

    Article  PubMed  CAS  Google Scholar 

  5. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  6. Yazdani, A. and Lieber, C. M. (1999) Up close and personal to atoms. Nature 401, 227–230.

    Article  PubMed  CAS  Google Scholar 

  7. Hansma, H. G. and Pietrasanta, L. (1998) Atomic force microscopy and other scanning probe microscopies. Curr. Opin. Chem. Biol. 2, 579–584.

    Article  PubMed  CAS  Google Scholar 

  8. Czajkowsky, D. M., Iwamoto, H., and Shao, Z. F. (2000) Atomic force microscopy in structural biology: from the subcellular to the submolecular. J. Electron Microsc. 49, 395–406.

    Article  CAS  Google Scholar 

  9. Bustamante, C., Rivetti, C., and Keller, D. J. (1997) Scanning force microscopy under aqueous solutions. Curr. Opin. Struct. Biol. 7, 709–716.

    Article  PubMed  CAS  Google Scholar 

  10. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150.

    Article  CAS  Google Scholar 

  11. Wong, S. S., Harper, J. D., Lansbury, P. T., Jr., and Lieber, C. M. (1998) Carbon nanotube tips: high resolution probes for imaging biological systems. J. Am. Chem. Soc. 120, 603–604.

    Article  CAS  Google Scholar 

  12. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., and Lieber, C. M. (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55.

    Article  PubMed  CAS  Google Scholar 

  13. Sun, L. F., Xie, S. S., Liu, W., Zhou, W. Y., Liu, Z. Q., Tang, D. S., et al. (2000) Creating the narrowest carbon nanotubes. Nature 403, 384.

    Article  PubMed  CAS  Google Scholar 

  14. Wong, S. S., Woolley, A. T., Odom, T. W., Huang, J.-L., Kim, P., Vezenov, D. V., et al. (1998) Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Appl. Phys. Lett. 73, 3465–3467.

    Article  CAS  Google Scholar 

  15. Woolley, A. T., Guillemette, C., Cheung, C. L., Housman, D. E., and Lieber, C. M. (2000) Direct haplotyping of kilobase-size DNA using carbon nanotube probes. Nat. Biotechnol. 18, 760–763.

    Article  PubMed  CAS  Google Scholar 

  16. Cheung, C. L., Hafner, J. H., and Lieber, C. M. (2000) Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high resolution imaging. Proc. Natl. Acad. Sci. USA 97, 3809–3813.

    Article  PubMed  CAS  Google Scholar 

  17. Wong, S. S., Woolley, A. T., Joselevich, E., Cheung, C. L., and Lieber, C. M. (1998) Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc. 120, 8557–8558.

    Article  CAS  Google Scholar 

  18. Wong, S. S., Woolley, A. T., Joselevich, E., and Lieber, C. M. (1999) Functionalization of carbon nanotube AFM probes using tip-activated gases. Chem. Phys. Lett. 306, 219–225.

    Article  CAS  Google Scholar 

  19. Woolley, A. T., Cheung, C. L., Hafner, J. H., and Lieber, C. M. (2000) Structural biology with carbon nanotube AFM probes. Chem. Biol. 7, R193–R204.

    Article  PubMed  CAS  Google Scholar 

  20. Hafner, J. H., Cheung, C. L., Woolley, A. T., and Lieber, C. M. (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77, 73–110.

    Article  PubMed  CAS  Google Scholar 

  21. Florin, E.-L., Moy, V. T., and Gaub, H. E. (1994) Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417.

    Article  PubMed  CAS  Google Scholar 

  22. Woolley, A. T. and Kelly, R. T. (2001) Deposition and characterization of extended single-stranded DNA molecules on surfaces. Nano Lett. 1, 345–348.

    Article  CAS  Google Scholar 

  23. Hughes, S. D. and Woolley, A. T. (2003) Detailed characterization of conditions for alignment of single-stranded and double-stranded DNA fragments on surfaces. Biomed. Microdevices 5, 69–74.

    Article  CAS  Google Scholar 

  24. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., et al. (1996) Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487.

    Article  PubMed  CAS  Google Scholar 

  25. A website listing a number of commercial SWNT suppliers is the following Website: http://www.pa.msu.edu/cmp/csc/NTSite/nanotube-sources-com.html.

  26. Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Growth of nanotubes for probe microscopy tips. Nature 398, 761–762.

    Article  CAS  Google Scholar 

  27. Hafner, J. H., Cheung, C. L., and Lieber, C. M. (1999) Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc. 121, 9750–9751.

    Article  CAS  Google Scholar 

  28. Hafner, J. H., Cheung, C. L., Oosterkamp, T. H., and Lieber, C. M. (2001) High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 105, 743–746.

    Article  CAS  Google Scholar 

  29. Ekvall, I., Wahlström, E., Claesson, D., Olin, H., and Olsson, E. (1999) Preparation and characterization of electrochemically etched W tips for STM. Meas. Sci. Technol. 10, 11–18.

    Article  CAS  Google Scholar 

  30. Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whitesides, G. M., and Nuzzo, R. G. (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335.

    Article  CAS  Google Scholar 

  31. Sagiv, J. (1980) Organized monolayers by adsorption. I. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc. 102, 92–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Woolley, A.T. (2004). Biofunctionalization of Carbon Nanotubes for Atomic Force Microscopy Imaging. In: Niemeyer, C.M. (eds) Bioconjugation Protocols. Methods in Molecular Biology™, vol 283. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-813-7:305

Download citation

  • DOI: https://doi.org/10.1385/1-59259-813-7:305

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-098-4

  • Online ISBN: 978-1-59259-813-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics