Skip to main content

Biochemical Analysis of the Cell Cycle and Cell Cycle Checkpoints in Transiently Transfected Cells After Collection With Magnetic Beads

  • Protocol
Checkpoint Controls and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 281))

  • 3809 Accesses

Abstract

It is frequently necessary to examine the biochemical effects of ectopically expressed proteins or short hairpin (sh) RNA-mediated protein knock-down in intact cells. Plasmids that direct the expression of ectopic proteins or shRNAs can be conveniently introduced into cells by transient transfection of plasmid DNAs. However, most protocols used for the transient transfection of plasmid DNAs introduce the foreign DNA into only a minority of the total cells. Therefore, to investigate the biochemical effects of the foreign DNA it is necessary to purify the transfected cells away from the untransfected cells. This can be easily achieved by cotransfection of a plasmid encoding the cell surface marker protein CD19 or CD20, followed by immunopurification of the CD19- or CD20-expressing cells with magnetic beads coated with an anti-CD19 or anti-CD20 antibody. The purified cells can be used for a wide range of biochemical analyses, including protein extraction for Western blot and immunoprecipitation, RNA extraction for Northern blot, and DNA and chromatin extraction for nuclease digestion. Since the CD19/CD20 cell surface marker approach can be readily combined with analysis of cell cycle distribution of propidium-iodide-stained cells, it is straightforward to simultaneously determine the biochemical and cell cycle effects of an ectopically expressed or knocked-down protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McManus, M. T. and Sharp, P. A. (2002) Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747.

    Article  PubMed  CAS  Google Scholar 

  2. Brummelkamp, T. R., Bernards, R., and Agami, R., (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science. 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  3. Yu, J. Y., DeRuiter, S. L., and Turner, D. L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052.

    Article  PubMed  CAS  Google Scholar 

  4. Miyagishi, M. and Taira, K. (2002) U6 promoter driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20, 497–500.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, N.S., Dohjima, T., Bauer, G., et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20, 500–505.

    PubMed  CAS  Google Scholar 

  6. Davis, A. R., Wivel, N. A., Palladino, J. L., Tao, L., and Wilson, J. M., (2000) Construction of adenoviral vectors. Methods Mol. Biol. 135, 515–523.

    PubMed  CAS  Google Scholar 

  7. Federspiel, M. J. and Hughes, S. H., (1997) Retroviral gene delivery. Methods Cell Biol. 52, 179–214.

    Article  PubMed  CAS  Google Scholar 

  8. Wadia, J. S. and Dowdy, S. F., (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52–56.

    Article  PubMed  CAS  Google Scholar 

  9. Lundberg, A. S. and Weinberg, R. A., (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18, 753–761.

    PubMed  CAS  Google Scholar 

  10. Peeper, D. S., Upton, T. M., Ladha, M. H., et al. (1997) Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181.

    Article  PubMed  CAS  Google Scholar 

  11. Hall, C., Nelson, D. M., Ye, X., et al. (2001) HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression. Mol. Cell. Biol. 21, 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson, D. M., Hall, C., Santos, H, et al. (2002) Coupling of DNA synthesis and histone synthesis in S-phase independent of cyclin/cdk2 activity. Mol. Cell. Biol. 22, 7459–7472.

    Article  PubMed  CAS  Google Scholar 

  13. Ye, X., Franco, A. A., Santos, H., Nelson, D. M., Kaufman, P. D., and Adams, P. D. (2003) Defective S-phase chromatin assembly causes DNA damage, activation of the S-phase checkpoint and S-phase arrest. Molecular Cell 11, 341–351.

    Article  PubMed  CAS  Google Scholar 

  14. Santoni-Rugiu, E., Falck, J., Mailand, N., Bartek, J., and Lukas, J. (2000) Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Mol. Cell. Biol. 20, 3497–3509.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu, L., Enders, G., Lees, J. A., Beijersbergen, R. L., Bernards, R., and Harlow, E. (1995) The pRB-related protein p107 contains two growth suppression domains: independent interactions with E2F and cyclin/cdk complexes. EMBO J. 14, 1904–1913.

    PubMed  CAS  Google Scholar 

  16. Adams, P. D., Sellers, W. R., Sharma, S. K., Wu, A. D., Nalin, C. M., and Kaelin, W. G., Jr., (1996) Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell. Biol. 16, 6623–6633.

    PubMed  CAS  Google Scholar 

  17. Chen, C. and Okayama, H., (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752.

    PubMed  CAS  Google Scholar 

  18. Sellers, W. R., Rodgers, J. W., and Kaelin, W. G., Jr., (1995) A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl. Acad. Sci. USA 92, 11,544–11,548.

    Article  PubMed  CAS  Google Scholar 

  19. Qin, X. Q., Livingston, D. M., Ewen, M., Sellers, W. R., Arany, Z., and Kaelin, W. G., Jr. (1995) The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15, 742–755.

    PubMed  CAS  Google Scholar 

  20. Adams, P. D., (2003) Unpublished data.

    Google Scholar 

  21. Hofmann, F. and Livingston, D. M., (1996) Differential effects of cdk2 and cdk3 on the control of pRb and E2F function during G1 exit. Genes Dev. 10, 851–861.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Ye, X., Poustovoitov, M., Santos, H., Nelson, D.M., Adams, P.D. (2004). Biochemical Analysis of the Cell Cycle and Cell Cycle Checkpoints in Transiently Transfected Cells After Collection With Magnetic Beads. In: Schönthal, A.H. (eds) Checkpoint Controls and Cancer. Methods in Molecular Biology, vol 281. Humana Press. https://doi.org/10.1385/1-59259-811-0:261

Download citation

  • DOI: https://doi.org/10.1385/1-59259-811-0:261

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-500-2

  • Online ISBN: 978-1-59259-811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics