Skip to main content

Expression, Activity, and Regulation of MAP Kinases in Cultured Chondrocytes

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 100))

Abstract

The mitogen-activated protein (MAP) kinase family consists of extracellular signal-regulated protein kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK) and transduces signals from the extracellular environment to the cytoplasm and nucleus. MAP kinase signaling involves a multistep kinase cascade including MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK), and MAP kinase. The MAP kinase subtypes are constitutively expressed in articular chondrocytes and they regulate chondrocyte function, including differentiation, apoptosis, inflammatory responses, and activation of matrix metalloproteinases. Therefore, imbalance or destruction of homeostasis regulating MAP kinase activity is related to the pathogenesis of cartilage diseases such as osteoarthritis. This chapter describes methods for measuring and modulating MAP kinase subtype activity in primary cultured articular chondrocytes and cartilage explants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912.

    Article  CAS  PubMed  Google Scholar 

  2. Schaeffer, H. J. and Weber, M. J. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444.

    CAS  PubMed  Google Scholar 

  3. Garrington, T. P. and Johnson, G. L. (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell. Biol. 11, 211–218.

    Article  CAS  PubMed  Google Scholar 

  4. Weston, C. R. and Davis R. J. (2002) The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 12, 14–21.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, S.-J., Ju, J.-W., Oh, C.-D., et al.(2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332–1339.

    Article  CAS  PubMed  Google Scholar 

  6. Kim, S.-J., Hwang, S.-G., Shin, D.-Y., Kang, S.-S., and Chun, J.-S. (2002) p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NFκ B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem. 277, 33,501–33,508.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, S.-J., Kim, H.-G., Oh, C.-D., et al.(2002) p38 kinase-dependent and-independent inhibition of protein kinase C-ζ and-α regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem. 277, 30,375–30,381.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon, Y.-M., Kim, S.-J., Oh, C.-D., et al. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412–8420.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S.-J. and Chun, J.-S. (2003) Protein kinase Cα and ζ regulate nitric oxide-induced NFκB activation that mediates cyclooxygenase-2 expression and apoptosis but not dedifferentiation in articular chondrocytes. Biochem. Biophys. Res. Commun. 303, 206–211.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon, Y.-M., Kim, S.-J., Oh, C.-D., et al. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277, 8412–8420.

    Article  CAS  PubMed  Google Scholar 

  11. Ryu, J.-H., Kim, S.-J., Kim, S.-H., et al. (2002) β-Catenin regulation of the chondrocyte phenotypes. Development 129, 5541–5550.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, S.-J., Lim, D.-S., Kim, S.-H., et al. (2002) β-Catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem. Biophys. Res. Commun. 296, 221–226.

    Article  CAS  PubMed  Google Scholar 

  13. Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., and Saltiel A. R. (1995) PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 27,489–27,494.

    Article  CAS  PubMed  Google Scholar 

  14. Favata, M. F., Horiuchi, K. Y., Manos, E. J., et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18,623–18,632.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, Y., Chen, C., Li, Z., et al. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271, 17,920–17,926.

    Article  CAS  PubMed  Google Scholar 

  16. Cuenda, A., Rouse, J., Doza, Y. N., et al. (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233.

    Article  CAS  PubMed  Google Scholar 

  17. Bennett, B. L., Sasaki, D. T., Murray, B. W., et al. (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13,681–13,686.

    Article  CAS  PubMed  Google Scholar 

  18. Bonny, C., Oberson, A., Negri, S., Sauser, C., and Schorderet, D. F. (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50, 77–82.

    Article  CAS  PubMed  Google Scholar 

  19. Robbins, D. J., Zhen, E., Owaki, H., et al. (1993) Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 268, 5097–5106.

    CAS  PubMed  Google Scholar 

  20. Raingeaud, J., Gupta, S., Rogers, J. S., et al. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420–7426.

    Article  CAS  PubMed  Google Scholar 

  21. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B., and Davis, R. J. (1996) MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247–1255.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chun, JS. (2004). Expression, Activity, and Regulation of MAP Kinases in Cultured Chondrocytes. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:291

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics