Skip to main content

High-Efficiency Nonviral Transfection of Primary Chondrocytes

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 100))

  • 1364 Accesses

Abstract

The introduction of foreign DNA into mammalian cells is an essential investigative tool in molecular biology. Nonviral approaches to transfection offer the advantage of relatively simple vector design, production, and purification and, for tissue engineering applications, avoid many of the potential risks associated with virus-mediated transfection methods. Unfortunately, primary cells, and in particular chondrocytes, are notoriously refractory to conventional transfection approaches, and optimized transfection efficiencies in these cells are extremely low (1–1.5%). In this chapter, we present three protocols that have proved useful in transfecting primary chondrocytes at high efficiency (∼70%). The first uses radiofrequency electroporation, a transfection method that frequently works extremely well in cell types that are difficult to transfect. It should be noted that electroporation is not limited to DNA but that essentially any molecule can be introduced into the cell using this approach. In addition to the primary protocol, we present two additional reliable, albeit less efficient backup protocols, the first using exponential decay electroporation and the second FuGENE™ 6 transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid, T., Warren, R., and Kirn, D. (2002) Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Ther. 9, 979–986.

    Article  CAS  PubMed  Google Scholar 

  2. Hamm, A., Krott, N., Breibach, I., Blindt, R., and Bosserhoff, A. K. (2002) Efficient transfection method for primary cells. Tissue Eng. 8, 235–245.

    Article  CAS  PubMed  Google Scholar 

  3. Stove, J., Fiedler, J., Huch, K., Gunther, K. P., Puhl, W., and Brenner, R. (2002) Lipofection of rabbit chondrocytes and long lasting expression of a lacZ reporter system in alginate beads. Osteoarthritis Cartilage 10, 212–217.

    Article  CAS  PubMed  Google Scholar 

  4. Goomer, R. S., Deftos, L. J., Terkeltaub, R., et al. (2001) High-efficiency nonviral transfection of primary chondrocytes and perichondrial cells for ex-vivo gene therapy to repair articular cartilage defects. Osteoarthritis Cartilage 9, 248–256.

    Article  CAS  PubMed  Google Scholar 

  5. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    CAS  PubMed  Google Scholar 

  6. Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107, 584–587.

    Article  CAS  PubMed  Google Scholar 

  7. Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.

    Article  CAS  PubMed  Google Scholar 

  8. Gehl, J. (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177, 437–447.

    Article  CAS  PubMed  Google Scholar 

  9. Kekez, M. M., Savic, P., and Johnson, B. F. (1996) Contribution to the biophysics of the lethal effects of electric field on microorganisms. Biochim Biophys. Acta 1278, 79–88.

    Article  PubMed  Google Scholar 

  10. Lennon, D. P., Haynesworth, S. E., Arm, D. M., Baber, M. A., and Caplan, A. I. (2000) Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev. Dyn. 219, 50–62.

    Article  CAS  PubMed  Google Scholar 

  11. Ahrens, P. B., Solursh, M., and Reiter, R. S. (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60, 69–82.

    Article  CAS  PubMed  Google Scholar 

  12. Raptis, L. and Firth, K. L. (1990) Electroporation of adherent cells in situ. DNA Cell Biol. 9, 615–621.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, Q. A. and Chang, D. C. (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim. Biophys. Acta 1088, 104–110.

    CAS  PubMed  Google Scholar 

  14. Wegener, J., Keese, C. R., and Giaever, I. (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33, 348–357.

    CAS  PubMed  Google Scholar 

  15. Saito, T. and Nakatsuji, N. (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246.

    Article  CAS  PubMed  Google Scholar 

  16. Ohashi, S., Kubo, T., Kishida, T., et al. (2002) Successful genetic transduction in vivo into synovium by means of electroporation. Biochem. Biophys. Res. Commun. 293, 1530–1535.

    Article  CAS  PubMed  Google Scholar 

  17. Kishimoto, K. N., Watanabe, Y., Nakamura, H., and Kokubun, S. (2002) Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene. Bone 31, 340–347.

    Article  CAS  PubMed  Google Scholar 

  18. Muramatsu, T., Nakamura, A., and Park, H. M. (1998) In vivo electroporation: a powerful and convenient means of nonviral gene transfer to tissues of living animals (Review). Int. J. Mol. Med. 1, 55–62.

    CAS  PubMed  Google Scholar 

  19. Chang, D. C. (1989) Cell poration and cell fusion using an oscillating electric field. Biophys. J. 56, 641–652.

    Article  CAS  PubMed  Google Scholar 

  20. Chang, D. C., Gao, P. Q., and Maxwell, B. L. (1991) High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim. Biophys. Acta 1092, 153–160.

    Article  CAS  PubMed  Google Scholar 

  21. Zald, P. B., Cotter, M. A., and Robertson, E. S. (2001) Strategy for increased efficiency of transfection in human cell lines using radio frequency electroporation. Prep. Biochem. Biotechnol. 31, 1–11.

    Article  CAS  PubMed  Google Scholar 

  22. Zald, P. B., Cotter, M. A., 2nd, and Robertson, E. S. (2000) Improved transfection efficiency of 293 cells by radio frequency electroporation. Biotechniques 28, 418–420.

    CAS  PubMed  Google Scholar 

  23. Rols, M. P., Delteil, C., Serin, G., and Teissie, J. (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res. 22, 540.

    Article  CAS  PubMed  Google Scholar 

  24. Madry, H., and Trippel, S. B. (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286–291.

    Article  CAS  PubMed  Google Scholar 

  25. Gehl, J., Skovsgaard, T., and Mir, L. M. (1998) Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 9, 319–325.

    Article  CAS  PubMed  Google Scholar 

  26. Piera-Velazquez, S., Jimenez, S. A., and Stokes, D. (2002) Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum. 46, 683–693.

    Article  CAS  PubMed  Google Scholar 

  27. Kotnik, T., Bobanovic, F., and Miklavcic, D. (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theroetical analysis. Bioelectrochem. Bioenergetics 43, 285–291.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Welter, J.F., Solchaga, L.A., Stewart, M.C. (2004). High-Efficiency Nonviral Transfection of Primary Chondrocytes. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics