Skip to main content

Culture and Phenotyping of Chondrocytes in Primary Culture

  • Protocol
Cartilage and Osteoarthritis

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 100))

Abstract

The culture of chondrocytes is one of the most powerful tool for exploring the intracellular and molecular features of chondrocyte differentiation and activation. However, chondrocytes tend to dedifferentiate to fibroblasts when they are subcultured, which is a major problem. This chapter describes several protocols for culturing chondrocytes of different anatomical origins (articular and costal chondrocytes) from various species (humans, mice, rabbits, and cattle). All these protocols involve primary cultures in order to limit dedifferentiation. This chapter also describes a new protocol for culturing mouse articular chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aydelotte, M. B., and Kuettner, K. E. (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Connect. Tissue Res. 18, 205–222

    Article  CAS  PubMed  Google Scholar 

  2. von der Mark, K. and Conrad, G. (1979) Cartilage cell differentiation. Clin. Orthop. 139, 185–205

    PubMed  Google Scholar 

  3. Stokes, D. G., Liu, G., Coimbra, I. B., Piera-Velazquez, S., Crowl, R. M., and Jimenez, S. A. (2002) Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum. 46, 404–419.

    Article  CAS  PubMed  Google Scholar 

  4. Kergosien, N., Sautier, J., and Forest, N. (1998) Gene and protein expression during differentiation and matrix mineralization in a chondrocyte cell culture system. Calcif. Tissue Int. 62, 114–121.

    Article  CAS  PubMed  Google Scholar 

  5. Hauselmann, H. J., Aydelotte, M. B., Schumacher, B. L., Kuettner, K. E., Gitelis, S. H., and Thonar, E. J. (1992) Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 12, 116–129.

    CAS  PubMed  Google Scholar 

  6. Karsenty, G. (2001) Chondrogenesis just ain’t what it used to be. J. Clin. Invest. 107, 405–407.

    Article  CAS  PubMed  Google Scholar 

  7. Corvol, M. T., Dumontier, M. F., and Rappaport, R. (1975) Culture of chondrocytes from the proliferative zone of epiphyseal growth plate cartilage from prepubertal rabbits. Biomedicine 23, 103–107.

    CAS  PubMed  Google Scholar 

  8. Mwale, F., Billinghurst, C., Wu, W., et al. (2000) Selective assembly and remodelling of collagens II and IX associated with expression of the chondrocyte hypertrophic phenotype. Dev. Dyn. 218, 648–662.

    Article  CAS  PubMed  Google Scholar 

  9. Goldring, M. B. (2000) The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 43, 1916–1926.

    Article  CAS  PubMed  Google Scholar 

  10. Goldring, M. B. and Berenbaum, F. (1999) Human chondrocyte culture models for studying cyclooxygenase expression and prostaglandin regulation of collagen gene expression. Osteoarthritis Cartilage 7, 386–388.

    Article  CAS  PubMed  Google Scholar 

  11. Watt, F. M. (1988) Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J. Cell. Sci. 89, 373–378.

    PubMed  Google Scholar 

  12. Stokes, D. G., Liu, G., Dharmavaram, R., Hawkins, D., Piera-Velazquez, S., and Jimenez, S. A. (2001) Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem. J. 360, 461–470.

    Article  CAS  PubMed  Google Scholar 

  13. Goldring, M. B., Birkhead, J., Sandell, L. J., Kimura, T., and Krane, S. M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J. Clin. Invest. 82, 2026–2037.

    Article  CAS  PubMed  Google Scholar 

  14. Goldring, M. B., Birkhead, J. R., Suen, L. F., et al. (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J. Clin. Invest. 94, 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  15. Demoor-Fossard, M., Redini, F., Boittin, M., and Pujol, J. P. (1998) Expression of decorin and biglycan by rabbit articular chondrocytes. Effects of cytokines and phenotypic modulation. Biochim. Biophys. Acta 1398, 179–191.

    CAS  PubMed  Google Scholar 

  16. Gibson, G. J., Schor, S. L., and Grant, M. E. (1982) Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J. Cell Biol. 93, 767–774.

    Article  CAS  PubMed  Google Scholar 

  17. Takigawa, M., Pan, H. O., Kinoshita, A., Tajima, K., and Takano, Y. (1991) Establishment from a human chondrosarcoma of a new immortal cell line with high tumorigenicity in vivo, which is able to form proteoglycan-rich cartilage-like nodules and to respond to insulin in vitro. Int. J. Cancer 48, 717–725.

    Article  CAS  PubMed  Google Scholar 

  18. Mallein-Gerin, F., and Olsen, B. R. (1993) Expression of simian virus 40 large T (tumor) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc. Natl. Acad. Sci. USA 90, 3289–3293.

    Article  CAS  PubMed  Google Scholar 

  19. Robbins, J. R., Thomas, B., Tan, L., et al. (2000) Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis Rheum. 43, 2189–2201.

    Article  CAS  PubMed  Google Scholar 

  20. Adolphe, M., Froger, B., Ronot, X., Corvol, M. T., and Forest, N. (1984) Cell multiplication and type II collagen production by rabbit articular chondrocytes cultivated in a defined medium. Exp. Cell Res. 155, 527–536.

    Article  CAS  PubMed  Google Scholar 

  21. Martin, I., Vunjak-Novakovic, G., Yang, J., Langer, R., and Freed, L. E. (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp. Cell Res. 253, 681–688.

    Article  CAS  PubMed  Google Scholar 

  22. Kuettner, K. E., Memoli, V. A., Pauli, B. U., Wrobel, N. C., Thonar, E. J., and Daniel, J. C. (1982) Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J. Cell Biol. 93, 751–757.

    Article  CAS  PubMed  Google Scholar 

  23. Domm, C., Schunke, M., Christesen, K., and Kurz, B. (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 10, 13–22.

    Article  CAS  PubMed  Google Scholar 

  24. Zaucke, F., Dinser, R., Maurer, P., and Paulsson, M. (2001) Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem. J. 358, 17–24.

    Article  CAS  PubMed  Google Scholar 

  25. Rahfoth, B., Weisser, J., Sternkopf, F., Aigner, T., von der Mark, K., and Brauer, R. (1998) Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage 6, 50–65.

    Article  CAS  PubMed  Google Scholar 

  26. Robbins, J. R. and Goldring, M. B. (1998) Preparation of immortalized human chondrocyte cell lines, in Tissue Engineering, Vol. 18 (Morgan, J. R., and Yarmush, M. L., eds.), Humana, Totowa, NJ, pp. 173–192.

    Chapter  Google Scholar 

  27. Goldring, M. B. (1996) Human chondrocyte cultures as models of cartilage-specific gene regulation, in Human Cell Culture Protocols, Vol. 2 (Gareth, E. J., ed.), Humana, Totowa, NJ, pp. 217–232.

    Chapter  Google Scholar 

  28. Aulthouse, A. L., Beck, M., Griffey, E., et al. (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev. Biol. 25, 659–668.

    Article  CAS  PubMed  Google Scholar 

  29. Carrascosa, A., Audi, L., and Ballabriga, A. (1985) Morphologic and metabolic development of human fetal epiphyseal chondrocytes in primary culture. Pediatr. Res. 19, 720–727.

    Article  CAS  PubMed  Google Scholar 

  30. Reginato, A. M., Iozzo, R. V., and Jimenez, S. A. (1994) Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum. 37, 1338–1349.

    Article  CAS  PubMed  Google Scholar 

  31. Stove, J., Gerlach, C., Huch, K., et al. (2001) Gene expression of stromelysin and aggrecan in osteoarthritic cartilage. Pathobiology 69, 333–338.

    Article  CAS  PubMed  Google Scholar 

  32. Kawiak, J., Moskalewski, S., and Darzynkiewicz, Z. (1965) Isolation of chondrocytes from calf cartilage. Exp. Cell Res. 39, 59–68.

    Article  CAS  PubMed  Google Scholar 

  33. Nedelec, E., Abid, A., Cipolletta, C., et al. (2001) Stimulation of cyclooxygenase-2-activity by nitric oxide-derived species in rat chondrocyte: lack of contribution to loss of cartilage anabolism. Biochem. Pharmacol. 61, 965–978.

    Article  CAS  PubMed  Google Scholar 

  34. Okazaki, M., Higuchi, Y., and Kitamura, H. (2003) AG-041R stimulates cartilage matrix synthesis without promoting terminal differentiation in rat articular chondrocytes. Osteoarthritis Cartilage 11, 122–132.

    Article  CAS  PubMed  Google Scholar 

  35. Gouze, J. N., Bordji, K., Gulberti, S., et al. (2001) Interleukin-1beta down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1β-mediated effects in rat chondrocytes. Arthritis Rheum. 44, 351–360.

    Article  CAS  PubMed  Google Scholar 

  36. Gouze, J. N., Bianchi, A., Becuwe, P., et al. (2002) Glucosamine modulates IL-1-induced activation of rat chondrocytes at a receptor level, and by inhibiting the NF-k B pathway. FEBS Lett. 510, 166–170.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Thirion, S., Berenbaum, F. (2004). Culture and Phenotyping of Chondrocytes in Primary Culture. In: Sabatini, M., Pastoureau, P., De Ceuninck, F. (eds) Cartilage and Osteoarthritis. Methods in Molecular Medicine™, vol 100. Humana Press. https://doi.org/10.1385/1-59259-810-2:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-810-2:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-247-6

  • Online ISBN: 978-1-59259-810-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics