Skip to main content

Membrane Protein Structure Determination Using Solid-State NMR

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment and structural determinations for any large (Mr > approx 30,000) complex unless specific methods to reduce the information content to a manageable amount are employed. Such methods include specific residue-type labeling, labeling of putative segments of a protein, or examination of complexes made up of smaller, manageable units, such as oligomeric ion channels. Labeling possibilities are usually limited to recombinant or synthesized proteins, and labeling strategies often follow models from a bioinformatics approach. In all cases, and in common with most membrane studies, sample preparation is vital, and this activity alone can take considerable effort before NMR can be applied—peptide or protein production (synthesis or expression) followed by reconstitution into bilayers and resolution of suitable sample geometry is still technically challenging. As experience is gained in the field, this development time should decrease. Here, the practical aspects of the use of solid-state NMR for membrane protein structural determinations are presented, as well as how the methodology can be applied. Some successes to date are discussed, with an indication of how the area might develop.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arkin, I. T., Brünger, A. T., and Engelman, D. M. (1997) Are there dominant membrane protein families with a given number of helices? Proteins 28, 465–466.

    PubMed  CAS  Google Scholar 

  2. Terstappen, G. C. and Reggiani, A. (2001) In silico research in drug discovery. Trends Pharmacol. Sci. 22, 23–26.

    PubMed  CAS  Google Scholar 

  3. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. M. (1997) Xray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681.

    PubMed  CAS  Google Scholar 

  4. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 277, 687–690.

    Google Scholar 

  5. Wüthrich, K. (1998) The second decade—into the third millenium. Nat. Struct. Biol. 5, 492–495.

    PubMed  Google Scholar 

  6. Davis, J. H., and Auger, M. (1999) Static and magic angle spinning NMR of membrane peptides and proteins. Prog. NMR Spectrosc. 35, 1–84.

    CAS  Google Scholar 

  7. Griffin, R. G. (1998) Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol. 5(Suppl.), 508–512.

    PubMed  CAS  Google Scholar 

  8. De Groot, H. J. M. (2000) Solid-state NMR spectroscopy applied to membrane proteins. Curr. Opin. Biotechnol. 10, 593–600.

    Google Scholar 

  9. Smith, S. O., Aschheim, K., and Groesbeek, M. (1996) Magic angle spinning NMR spectroscopy of membrane proteins. Q. Rev. Biophys. 29, 395–449.

    PubMed  CAS  Google Scholar 

  10. Glaubitz, C., and Watts, A. (1998) Magic angle-oriented sample spinning (MAOSS): a new approach toward biomembrane studies. J. Magn. Reson. 130, 305–316.

    PubMed  CAS  Google Scholar 

  11. Goto, N. K., and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.

    PubMed  CAS  Google Scholar 

  12. Opella, S. J., Ma, C., and Marassi, F. M. (2001) Nuclear magnetic resonance of membrane-associated peptides and proteins. Methods Enzymol. 339, 285–313.

    PubMed  CAS  Google Scholar 

  13. Marassi, F. M., Ramamoorthy, A., and Opella, S. J. (1997) Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc. Natl. Acad. Sci. USA 94, 8551–8556.

    PubMed  CAS  Google Scholar 

  14. Oesterhelt, D., and Stoeckenius, W. (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 31, 667–678.

    PubMed  CAS  Google Scholar 

  15. Mason, A. J., Grage, S. L., Glaubitz, C., Strauss, S. K., and Watts, A. (2004) Identifying anisotropic constraints in multiply labeled membrane proteins by 15N MAS NMR. Biophys. J. 86, 1610–1617.

    PubMed  CAS  Google Scholar 

  16. Creemers, A. F. L., Klaassen, C. H. W., Bovee-Geurts, P. H. M., Kelle, R., Kragl, U., Raap, J., et al. (1999) Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. Biochemistry 38, 7195–7199.

    PubMed  CAS  Google Scholar 

  17. Eilers, M., Reeves, P. J., Ying, W., Gobind Khorana, H. G., and Smith, S. O. (1999) Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine-and 13C-glycine-labeled opsin in a stable cell line. Proc. Natl. Acad. Sci. USA 93, 487–492.

    Google Scholar 

  18. Seelig, J. (1970) Spin label studies of oriented smectic liquid crystals: a model system for bilayer membranes. J. Am. Chem. Soc. 92, 3881–3887.

    CAS  Google Scholar 

  19. Smith, I. C. P. (1971) A spin label study of the organization and fluidity of hydrated phospholipid multilayers: a model membrane system. Chimia 25, 349–380.

    CAS  Google Scholar 

  20. Powers, L. and Clark, N. A. (1975) Preparation of large monodomain phospholipid bilayer smectic liquid crystals. Proc. Natl. Acad. Sci. USA 72, 840–843.

    PubMed  CAS  Google Scholar 

  21. Clark, N. A., Rothschild, K. J., Luippold, D. A., and Simon, B. A. (1980) Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments. Biophys. J. 31, 65–96.

    PubMed  CAS  Google Scholar 

  22. Rothgeb, T. M., and Oldfield, E. (1981) Nitrogen-14 nuclear magnetic resonance spectroscopy as a probe of lipid bilayer headgroup structure. J. Biol. Chem. 256, 6004–6009.

    PubMed  CAS  Google Scholar 

  23. Macnaughtan, W., Snook, K. A., Capsi, E., and Franks, N. P. (1985) An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim. Biophys. Acta 818, 132–148.

    PubMed  CAS  Google Scholar 

  24. Tamm, L. K., and Mcconnell, H. M. (1985) Supported phospholipid bilayers. Biophys. J. 47, 105–113.

    PubMed  CAS  Google Scholar 

  25. Marassi, F. M. (2002) NMR of peptides and proteins in oriented membranes. Conc. Magn. Reson. 14, 212–224.

    CAS  Google Scholar 

  26. Sizun, C., and Bechinger, B. (2002) Bilayer sample for fast or slow magic angle oriented sample spinning solid state NMR spectroscopy. J. Am. Chem. Soc. 124, 1146–1147.

    PubMed  CAS  Google Scholar 

  27. Gröbner, G., Burnett, I. J., Glaubitz, C., Chol, G., Mason, A. J., and Watts, A. (2000) Observation of light-induced structural changes of retinal within rhodopsin. Nature 405, 810–813.

    PubMed  Google Scholar 

  28. Glaubitz, C., Gröbner, G., and Watts, A. (2000) Structural and orientational information of the membrane embedded M13 coat protein by 13C-MAS NMR spectroscopy. Biochim. Biophys. Acta 1463, 151–161.

    PubMed  CAS  Google Scholar 

  29. Grobner, G., Taylor, A., Williamson, P. T., Choi, G., Glaubitz, C., Watts, J. A., et al. (1997) Macroscopic orientation of natural and model membranes for structural studies. Anal. Biochem. 254, 132–138.

    PubMed  CAS  Google Scholar 

  30. Marassi, F. M., and Crowell, K. J. (2003) Hydration-optimized oriented phospholipid bilayer samples for solid-state NMR structural studies of membrane proteins. J. Magn. Reson. 161, 64–69.

    PubMed  CAS  Google Scholar 

  31. Hallock, K. J., Henzler-Wildman, K., Lee, D. K., and Ramamoorthy, A. (2002) An innovative procedure using a sublimable solid to align lipid bilayers for solid state NMR studies. Biophys. J. 82, 2499–2503.

    PubMed  CAS  Google Scholar 

  32. Moll, F., and Cross, T. A. (1990) Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys. J. 57, 351–362.

    PubMed  CAS  Google Scholar 

  33. Prosser, R. S., and Shiyanovskaya, I. V. (2001) Lanthanide ion assisted magnetic alignment of model membranes and macromolecules. Conc. Magn. Reson. 13, 19–31.

    CAS  Google Scholar 

  34. Sanders, C. R., and Prosser, R. S. (1998) Bicelles: a model membrane system for all seasons? Structure 6, 1227–1234.

    PubMed  CAS  Google Scholar 

  35. Sanders, C. R., Hare, B. J., Howard, K. P., and Prestegard, J. H. (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. NMR Spectrosc. 26, 421–444.

    CAS  Google Scholar 

  36. Sanders, C. R., and Landis, G. C. (1995) Reconstitution of membrane-proteins into lipid-rich bilayered mixed micelles for NMR-studies. Biochemistry 34, 4030–4040.

    PubMed  CAS  Google Scholar 

  37. Ram, P., and Prestegard, J. H. (1988) Magnetic-field induced ordering of bile-salt phospholipid micelles—new media for NMR structure investigations. Biochim. Biophys. Acta 940, 289–294.

    PubMed  CAS  Google Scholar 

  38. Marcotte, I., Wegener, K. L., Lam, Y. H., Chia, B. C. S., Planque, M. R. R. D., Bowie, J.H., et al. (2003) Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem. Phys. Lett. 122, 107–120.

    CAS  Google Scholar 

  39. Whiles, J. A., Glover, K. J., Vold, R. R., and Komives, E. A. (2002) Methods for studying transmembrane peptides in bicelles: consequences of hydrophobic mismatch and peptide sequence. J. Magn. Reson. 158, 149–156.

    PubMed  CAS  Google Scholar 

  40. Whiles, J. A., Deems, R., Vold, R. R., and Dennis, E. A. (2002) Bicelles in structure-function studies of membrane-associated proteins. Bioorg. Chem. 30, 431–442.

    PubMed  CAS  Google Scholar 

  41. Prosser, R. S., Volkov, V. B., and Shiyanovskaya, I. V. (1998) Novel chelate-induced magnetic alignment of biological membranes. Biophys. J. 75, 2163–2169.

    PubMed  CAS  Google Scholar 

  42. Prosser, R. S., Bryant, H., Bryant, R. G., and Vold, R. R. (1999) Lanthanide chelates as bilayer alignment tools in NMR studies of membrane-associated peptides. J. Magn. Reson. 141, 256–260.

    PubMed  CAS  Google Scholar 

  43. Prosser, R. S., Hwang, J. S., and Vold, R. R. (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys. J. 74, 2405–2418.

    PubMed  CAS  Google Scholar 

  44. Nieh, M.-P., Glinka, C.-J., Krueger, S., Prosser, R. S., and Katsaras, J. (2002) SANS study on the effect of lanthanide ions and charged lipids on the morphology of phospholipid mixtures. Biophys. J. 82, 2487–2498.

    PubMed  CAS  Google Scholar 

  45. Nieh, M. P., Glinka, C. J., Krueger, S., Prosser, R. S., and Katsaras, J. (2001) SANS study of the structural phases of magnetically alignable lanthanide-doped phospholipid mixtures. Langmuir 17, 2629–2638.

    CAS  Google Scholar 

  46. Zandomeneghi, G., Tomaselli, M., Williamson, P. T. F., and Meier, B. H. (2003) NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation. J. Biomol. NMR 25, 113–123.

    PubMed  CAS  Google Scholar 

  47. Carlotti, C., Aussenac, F., and Dufourc, E. J. (2002) Towards high-resolution 1H-NMR in biological membranes: magic angle spinning of bicelles. Biochim. Biophys. Acta 1564, 156–164.

    PubMed  CAS  Google Scholar 

  48. Zandomeneghi, G., Williamson, P. T. F., Hunkeler, A., and Meier, B. H. (2003) Switched-angle spinning applied to bicelles containing phospholipid-associated peptides. J. Biomol. NMR 25, 125–132.

    PubMed  CAS  Google Scholar 

  49. Baldus, M. (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog. NMR Spectrosc. 41, 1–47.

    CAS  Google Scholar 

  50. Straus, S. K., Bremi, T., and Ernst, R. R. (1998) Experiments and strategies for the assignment of fully 13C/15N-labelled polypeptides by solid state NMR. J. Biomol. NMR 12, 39–40.

    PubMed  CAS  Google Scholar 

  51. Andrew, E. R., Bradbury, A., and Eades, R. G. (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183, 1802–1803.

    CAS  Google Scholar 

  52. Lowe, I. J. (1959) Free induction decay of rotating solids. Phys. Rev. Lett. 2, 285–287.

    CAS  Google Scholar 

  53. Creemers, A. F., Kiihne, S., Bovee-Geurts, P. H., Degrip, W. J., Lugtenburg, J., and De Groot, H. J. (2002) (1)H and (13)C MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc. Natl. Acad. Sci. USA 99, 9101–9106.

    PubMed  CAS  Google Scholar 

  54. Yao, X. L., and Hong, M. (2001) Dipolar filtered 1H-13C heteronuclear correlation spectroscopy for resonance assignment of proteins. J. Biomol. NMR 20, 263–274.

    PubMed  CAS  Google Scholar 

  55. Yao, X. L., Schmidt-Rohr, K., and Hong, M. (2001) Medium-and long-distance 1H-13C heteronuclear correlation NMR in solids. J. Magn. Reson. 149, 139–143.

    CAS  Google Scholar 

  56. Mehring, M. (1983) Principles of high resolution NMR in solids. In NMR: Basic Principles and Progress, vol. II (Fluck, E., Diehl, P., and Kosfeld, R., eds.). Springer, New York.

    Google Scholar 

  57. Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., and Griffin, R. G. (1995) Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958.

    CAS  Google Scholar 

  58. Detken, A., Hardy, E. H., Ernst, M., and Meier, B. H. (2002) Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme. Chem. Phys. Lett. 356, 298–304.

    CAS  Google Scholar 

  59. Carravetta, M., Eden, M., Zhao, X., Brinkmann, A., and Levitt, M. H. (1000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem. Phys. Lett. 321, 205–215.

    Google Scholar 

  60. Eden, M., and Levitt, M. H. (1999) Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: application to heteronuclear decoupling. J. Chem. Phys. 111, 1511–1519.

    CAS  Google Scholar 

  61. Pines, A., Gibby, M. G., and Waugh, J. S. (1973) Protein-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590.

    CAS  Google Scholar 

  62. Hartmann, S., and Hahn, E. L. (1962) Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053.

    CAS  Google Scholar 

  63. Peersen, O. B., and Smith, S. O. (1993) Rotational resonance NMR of biological membranes. Conc. Magn. Reson. 5, 303–317.

    CAS  Google Scholar 

  64. Metz, G., Wu, X., and Smith, S. O. (1994) Ramped-amplitude cross polarization in magic-angle-spinning NMR. J. Magn. Reson. 110, 219–227.

    CAS  Google Scholar 

  65. Hediger, S., Meier, B. H., Kurur, N. D., Bodenhausen, G., and Ernst, R. R. (1994) NMR cross polarization by adiabatic passage through the Hartmann-Hahn condition (APHH). Chem. Phys. Lett. 223, 283–288.

    CAS  Google Scholar 

  66. Dusold, S., and Sebald, A. (2000) Double-quantum filtration under rotational-resonance conditions: numerical simulations and experimental results. J. Magn. Reson. 145, 340–356.

    PubMed  CAS  Google Scholar 

  67. Bennett, A. E., Becerra, L. R., and Griffin, R. G. (1994) Frequency-selective heteronuclear recoupling in rotating solids. J. Chem. Phys. 100, 812–814.

    CAS  Google Scholar 

  68. Levitt, M. H., Raleigh, D. P., Creuzet, F., and Griffin, R. G. (1990) Theory and simulations of homonuclear spin pair systems in rotating solids. J. Chem. Phys. 92, 6347–6364.

    CAS  Google Scholar 

  69. Raleigh, D. P., Levitt, M. H., and Griffin, R. G. (1988) Rotational resonance in solid state NMR. Chem. Phys. Lett. 146, 71–76.

    CAS  Google Scholar 

  70. Colombo, M. G., Meier, B. H., and Ernst, R. R. (1988) Rotor-driven spin diffusion in natural abundance 13C spin systems. Chem. Phys. Lett. 146, 189–196.

    CAS  Google Scholar 

  71. Maas, W. E. J. R., and Veeman, W. S. (1988) Natural abundance 13C spin diffusion enhanced by magic angle spinning. Chem. Phys. Lipids 149, 170–174.

    CAS  Google Scholar 

  72. Kubo, Y., Miyashita, T., and Murata, Y. (1998) Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279, 1722–1725.

    PubMed  CAS  Google Scholar 

  73. Peersen, O. B., Groesbeek, M., Aimoto, S., and Smith, S. (1995) Analysis of rotational resonance magnetization exchange curves from crystalline peptides. J. Am. Chem. Soc. 117, 7228–7237.

    CAS  Google Scholar 

  74. Karlsson, T., and Levitt, M. H. (1998) Longitudinal rotational resonance echoes in solid state nuclear magnetic resonance: investigation of zero quantum spin dynamics. J. Chem. Phys. 109, 5493–5507.

    CAS  Google Scholar 

  75. Caravatti, P., Bodenhausen, G., and Ernst, R. R. (1983) Selective pulse experiments in high-resolution solid state NMR. J. Magn. Reson. 55, 88–103.

    CAS  Google Scholar 

  76. Bodenhausen, G., Freeman, R., and Morros, G. A. (1976) A simple pulse sequence for selective excitation in Fourier transform NMR. J. Magn. Reson. 23, 171–175.

    CAS  Google Scholar 

  77. Goobes, G., and Vega, S. (2002) MAS NMR structure refinement of uniformly 13C enriched chlorophyll a/water aggregates with 2D dipolar correlation spectroscopy. J. Magn. Reson. 154, 236–251.

    PubMed  CAS  Google Scholar 

  78. Goobes, G., Boender, G. J., and Vega, S. (2000) Spinning-frequency-dependent narrowband rf-driven dipolar recoupling. J. Magn. Reson. 146, 204–219.

    PubMed  CAS  Google Scholar 

  79. Costa, P. R., Sun, B., and Griffin, R. G. (1997) Rotational resonance tickling: accurate internuclear distance measurements in solids. J. Am. Chem. Soc. 119, 10,821–10,830.

    CAS  Google Scholar 

  80. Bennett, A. E., Weliky, D. P., and Tycko, R. (1998) Quantitative conformational measurements in solid state NMR by constant-time homonuclear dipolar recoupling. J. Am. Chem. Soc. 120, 4897–4898.

    CAS  Google Scholar 

  81. Weintraub, O., Vega, S., Hoelger, C., and Limbach, H. H. (1994) Distance measurements between homonuclear spins in rotating solids. J. Magn. Reson. 109, 14–25.

    CAS  Google Scholar 

  82. Balazs, Y. S., and Thompson, L. K. (1999) Practical methods for solid-state NMR distance measurements on large biomolecules constant-time rotational resonance. J. Magn. Reson. 139, 371–376.

    PubMed  CAS  Google Scholar 

  83. Karlsson, T., Edén, M., Luthman, H., and Levitt, M. H. (2000) Efficient doublequantum excitation in rotational resonance NMR. J. Magn. Reson. 145, 95–107.

    PubMed  CAS  Google Scholar 

  84. Nielsen, N. C., Creuzet, F., Griffin, R. G., and Levitt, M. H. (1992) Enhanced double-quantum nuclear magnetic resonance in spinning solids at rotational resonance. J. Chem. Phys. 96, 5668–5677.

    CAS  Google Scholar 

  85. Feng, X., Verdegem, P. J. E., Lee, Y. K., Helmle, M., Shekar, S.C., De Groot, H. J. M., et al. (1999) Rotational resonance NMR of 13C2-labelled retinal quantitative internuclear distance determination. Solid State Nucl. Magn. Reson. 14, 81–90.

    PubMed  CAS  Google Scholar 

  86. Nomura, K., Takegoshi, K., Terao, T., Uchida, K., and Kainosho, M. (1999) Determination of the complete structure of a uniformly labeled molecule by rotational resonance solid-state NMR in the tilted rotating frame. J. Am. Chem. Soc. 121, 4064, 4065.

    CAS  Google Scholar 

  87. Lam, Y.-H., Wassall, S. R., Morton, C. J., Smith, R., and Separovic, F. (2001) Solid-state NMR structure determination of melittin in a lipid environment. Biophys. J. 81, 2752–2761.

    PubMed  CAS  Google Scholar 

  88. Lam, Y.-H., Morton, C. J., and Separovic, F. (2002) Solid-state NMR conformational studies of a melittin-inhibitor complex. Eur. Biophys. J. 31, 383–388.

    PubMed  CAS  Google Scholar 

  89. Ahmed, Z., Reid, D. G., Watts, A., and Middleton, D. A. (2000) A solid-state NMR study of the phospholamban transmembrane domain: local structure and interactions with Ca(2+)-ATPase. Biochim. Biophys. Acta 1468, 187–198.

    PubMed  CAS  Google Scholar 

  90. Middleton, D. A., Robins, R., Feng, X., Levitt, M., Spiers, I. D., Schwalbe, C., et al. (1997) The conformation of an inhibitor bound to the gastric proton pump. FEBS Lett. 410, 269–274.

    PubMed  CAS  Google Scholar 

  91. Middleton, D. A., Rankin, S., Esmann, M., and Watts, A. (2000) Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc. Natl. Acad. Sci. USA 97, 13,602–13,607.

    PubMed  CAS  Google Scholar 

  92. Smith, S. O., Peersen, O. B., Yoshimura, S., and Aimoto, S. (1995) Determination of peptide structure in membranes by rotational resonance NMR. Pept. Chem. 32, 109–112.

    Google Scholar 

  93. Gullion, T., and Schaefer, J. (1989) Rotational-echo double resonance NMR. J. Magn. Reson. 81, 196–200.

    CAS  Google Scholar 

  94. Gullion, T,. and Schaefer, J. (1989) Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance nuclear magnetic resonance. Adv. Nucl. Magn. Reson. 13, 57–83.

    Google Scholar 

  95. Gullion, T. (1998) Introduction to rotational-echo, double-resonance NMR. Conc. Magn. Reson. 10, 277–289.

    CAS  Google Scholar 

  96. Goetz, J., Poliks, B., Studelska, D., Fischer, M., Kugelbrey, K., Bacher, A., et al. (1999) Investigation of the binding of fluoroluminazes to the 1-MDa capsid of luminaze synthase by 15N{19F} REDOR NMR. J. Am. Chem. Soc. 121, 7500–7508.

    CAS  Google Scholar 

  97. Gullion, T., Baker, D. B., and Conradi, M. S. (1990) New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484.

    CAS  Google Scholar 

  98. Sack, I., Goldbourt, A., Vega, S., and Buntkowsky, G. (1999) Deuterium REDOR: principles and applications for distance measurements. J. Magn. Reson. 138, 54–65.

    PubMed  CAS  Google Scholar 

  99. Merritt, M. E., Goetz, J. M., Whitney, D., Chang, C.P., Heux, L., Halary, J. L., et al. (1998) Location of the antiplasticizer in cross-linked epoxy resins by 2H, 15N and 13C REDOR NMR. Macromolecules 31, 1214–1220.

    CAS  Google Scholar 

  100. Gullion, T. (2000) Measuring 13C-2D dipolar couplings with a universal REDOR dephasing curve. J. Magn. Reson. 146, 220–222.

    PubMed  CAS  Google Scholar 

  101. Schmidt, A., Mckay, R. A., and Schaefer, J. (1992) Internuclear distance measurement between deuterium (I = 1) and a spin-1/2 nucleus in rotating solids. J. Magn. Reson. 96, 644.

    CAS  Google Scholar 

  102. Gullion, T. (1995) Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem. Phys. Lett. 246, 325–330.

    CAS  Google Scholar 

  103. Grey, C. P., Veeman, W. S., and Vega, A. J. (1993) Rotational echo 14N/13C/1H triple resonance solid state magnetic resonance: a probe of 13C-14N internuclear distances. J. Chem. Phys. 98, 7711–7724.

    CAS  Google Scholar 

  104. Fu, R., Smith, S. A., and Bodenhausen, G. (1997) Recoupling of heteronuclear dipolar interactions in solid state magic-angle spinning NMR by simultaneous frequency and amplitude modulation. Chem. Phys. Lett. 272, 361–369.

    CAS  Google Scholar 

  105. Hing, A. W., Vega, S., and Schaefer, J. (1992) Transferred-echo double-resonance NMR. J. Magn. Reson. 96, 205–209.

    CAS  Google Scholar 

  106. Goetz, J. M., and Schaefer, J. (1997) REDOR dephasing by multiple spins in the presence of molecular motion. J. Magn. Reson. 127, 147–154.

    PubMed  CAS  Google Scholar 

  107. Mueller, K. T., Jarvie, T. P., Aurentz, D. J., and Roberts, B. W. (1995) The REDOR transform: direct calculation of internuclear couplings from dipolardephasing NMR data. Chem. Phys. Lett. 242, 535–542.

    CAS  Google Scholar 

  108. Gullion, T., and Pennington, C. H. (1998) Theta-REDOR: an MAS NMR method to simplify coupled heteronuclear spin systems. Chem. Phys. Lett. 290, 88–93.

    CAS  Google Scholar 

  109. Jaroniec, C. P., Tounge, B. A., Rienstra, C. M., Herzfeld, J., and Griffin, R. G. (1999) Measurement of 13C-15N distances in uniformly 13C labeled biomolecules: J-decoupled REDOR. J. Am. Chem. Soc. 121, 10,237–10,238.

    CAS  Google Scholar 

  110. Goetz, J. M., and Schaefer, J. (1997) Orientational information in solids from REDOR sidebands. J. Magn. Reson. 129, 222–223.

    PubMed  CAS  Google Scholar 

  111. Weliky, D. P., Dabbagh, G., and Tycko, R. (1993) Correlation of chemical-bond directions and functional-group orientations in solids by 2-dimensional NMR. J. Magn. Reson. 104, 10–16.

    CAS  Google Scholar 

  112. Dabbagh, G., Weliky, D. P., and Tycko, R. (1994) Determination of monomer conformations in noncrystalline solid polymers by 2-dimensional NMR exchange spectroscopy. Macromolecules 27, 6183–6191.

    CAS  Google Scholar 

  113. Weliky, D. P., and Tycko, R. (1996) Determination of peptide conformations by two-dimensional magic angle spinning NMR exchange spectroscopy with rotor synchronization. J. Am. Chem. Soc. 118, 8487, 8488.

    CAS  Google Scholar 

  114. Tycko, R. (1999) Selective rules for multiple quantum NMR excitation in solids: derivation from time-reversal symmetry and comparison with simulations and C-13 NMR experiments. J. Magn. Reson. 139, 302–307.

    PubMed  CAS  Google Scholar 

  115. Ishii, T., Terao, T., and Kainosho, M. (1996) Relayed anisotropy correlation NMR: determination of dihedral angles in solids. Chem. Phys. Lipids 265, 133–140.

    Google Scholar 

  116. Ishii, Y., Hirao, K., Terao, T., Terauchi, T., Oba, M., Nishiyama, K., et al. (1998) Determination of peptide γ angles in solids by relayed anisotropy correlation NMR. Solid State Nucl. Magn. Reson. 11, 169–175.

    PubMed  CAS  Google Scholar 

  117. Takegoshi, K., Imaizumi, T., and Terao, T. (2000) One-and two-dimensional C-13-H-1/N-15-H-1 dipolar correlation experiments under fast magic-angle spinning for determining the peptide dihedral angle phi. Solid State Nucl. Magn. Reson 16, 271–278.

    PubMed  CAS  Google Scholar 

  118. Schmidt-Rohr, K. (1996) Double-quantum solid-state NMR technique for determining torsion angles in polymers. Macromolecules 29, 3975–3981.

    CAS  Google Scholar 

  119. Feng, X., Lee, Y. K., Sandstroem, D., Eden, M., Maisel, H., Sebald, A., et al. (1996) Direct determination of a molecular torsional angle by solid-state NMR. Chem. Phys. Lett. 257, 314–320.

    CAS  Google Scholar 

  120. Feng, X., Eden, M., Brinkmann, A., Luthman, H., Ericksson, L., Graslund, A., et al. (1997) Direct determination of a peptide torsion angle psi by double-quantum solid-state NMR. J. Am. Chem. Soc. 119, 12,006–12,007.

    CAS  Google Scholar 

  121. Feng, Y., and Gregor, P. (1997) Cloning of a novel member of the G protein-coupled receptor family related to peptide receptors. Biochem. Biophys. Res. Commun. 231, 651–654.

    PubMed  CAS  Google Scholar 

  122. Costa, P. R., Gross, J. D., Hong, M., and Griffin, R. G. (1997) Solid-state NMR measurement of Psi in peptides: a NCCN 2Q-heteronuclear local field experiment. Chem. Phys. Lett. 280, 95–103.

    CAS  Google Scholar 

  123. Hong, M., Gross, J. D., and Griffin, R. G. (1997) Site-resolved determination of peptide torsion angle γ from the relative orientations of backbone N-H and C-H bonds by solid-state NMR. J. Phys. Chem. B 101, 5869–5874.

    CAS  Google Scholar 

  124. Hong, M., Gross, J. D., Rienstra, C. M., Griffin, R. G., Kumashiro, K. K., and Schmidt-Rohr, K. (1997) Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J. Magn. Reson. 129, 85–92.

    PubMed  CAS  Google Scholar 

  125. Gregory, D. M., Mehta, M. A., Shiels, J. C., and Drobny, G. P. (1997) Determination of local structure in solid nucleic acids using double quantum nuclear magnetic resonance spectroscopy. J. Chem. Phys. 107, 28–42.

    CAS  Google Scholar 

  126. Bower, P. V., Oyler, N., Mehta, M. A., Long, J. R., Stayton, P. S., and Drobny, G. P. (1999) Determination of torsion angles in proteins and peptides using solid state NMR. J. Am. Chem. Soc. 121, 8373–8375.

    CAS  Google Scholar 

  127. Feng, X., Verdegem, P. J., Eden, M., Sandstrom, D., Lee, Y. K., Bovee, G., et al. (2000) Determination of a molecular torsional angle in the metarhodopsin-I photointermediate of rhodopsin by double-quantum solid-state NMR. J. Biomol. NMR 16, 1–8.

    PubMed  CAS  Google Scholar 

  128. Huster, D., Arnold, K., and Gawrisch, K. (2000) Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization. Biophys. J. 78, 3011–3018.

    PubMed  CAS  Google Scholar 

  129. Huster, D., Yamaguchi, S., and Hong, M. (2000) Efficient β-sheet identification in proteins by solid-state NMR spectroscopy. J. Am. Chem. Soc. 122, 11,320–11,327.

    CAS  Google Scholar 

  130. Ramamoorthy, A., Wu, C. H., and Opella, S. J. (1999) Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. J. Magn. Reson. 140, 131–140.

    PubMed  CAS  Google Scholar 

  131. Kim, S., Quine, J., and Cross, R. (2001) Complete cross-validation and R-factor calculation of a solid-state NMR derived structure. J. Am. Chem. Soc. 123, 7292–7298.

    PubMed  CAS  Google Scholar 

  132. Opella, S. J., Marassi, F. M., Gesell, J. J., Valente, A.P., Kim, Y., Oblatt-Montal, M., et al. (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat. Struct. Biol. 6, 374–379.

    PubMed  CAS  Google Scholar 

  133. Marassi, F. M., and Opella, S. J. (2000) A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155.

    PubMed  CAS  Google Scholar 

  134. Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., et al. (2000) Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167.

    PubMed  CAS  Google Scholar 

  135. Fares, C., Sharom, F. J., and Davis, J. H. (2002) 15N, 1H heteronuclear correlation NMR of gramicidin A in DMPC-d 67. J. Am. Chem. Soc. 124, 11,232–11,233.

    PubMed  CAS  Google Scholar 

  136. Straus, S. K., Scott, W., and Watts, A. (2003) Assessing the effects of time-and spatial-averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments. J. Biomol. NMR 26, 283–295.

    PubMed  CAS  Google Scholar 

  137. Denny, J. K., Wang, J., Cross, T. A., and Quine, J. R. (2001) PISEMA powder patterns and PISA wheels. J. Magn. Reson. 152, 217–226.

    PubMed  CAS  Google Scholar 

  138. Marassi, F. M. (2001) Asimple approach to membrane protein secondary structure and topology based on NMR spectroscopy. Biophys. J. 80, 994–1003.

    PubMed  CAS  Google Scholar 

  139. Waugh, J. S. (1976) Uncoupling of local field spectra in nuclear magnetic resonance: determination of atomic positions in solids. Proc. Natl. Acad. Sci. USA 73, 1394.

    PubMed  CAS  Google Scholar 

  140. Hester, R. K., Ackerman, J. L., Cross, V. R., and Waugh, J. S. (1975) Resolved dipolar coupling spectra of dilute nuclear spins in solids. Phys. Rev. Lett. 34, 993.

    CAS  Google Scholar 

  141. Opella, S. J., and Waugh, J. S. (1977) Two-dimensional 13C NMR of highly oriented polyethylene. J. Chem. Phys. 66, 4919.

    CAS  Google Scholar 

  142. Lee, M., and Goldburg, W. (1965) Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys. Rev. 140, 1261–1271.

    CAS  Google Scholar 

  143. Bielecki, A., Kolbert, A. C., and Levitt, M. (1989) Frequency-switched pulse sequences: homoneuclear decoupling and dilute spin NMR in solids. Chem. Phys. Lett. 155, 341–346.

    CAS  Google Scholar 

  144. Gan, Z. (2000) Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems. J. Magn. Reson. 143, 136–143.

    PubMed  CAS  Google Scholar 

  145. Ramamoorthy, A., Wu, C. H., and Opella, S. J. (1995) Three-dimensional solidstate NMR experiment that correlates the chemical shift and dipolar coupling frequencies of two heteronuclei. J. Magn. Reson. B 107, 88–90.

    PubMed  CAS  Google Scholar 

  146. Gu, Z. T. and Opella, S. J. (1999) Three dimensional 13C shift/1H-15N coupling/15N shift solid state NMR correlation spectroscopy. J. Magn. Reson. 138, 193–198.

    PubMed  CAS  Google Scholar 

  147. Ramamoorthy, A., Wu, C. H., and Opella, S. J. (1997) Magnitudes and orientations of the principal elements of the 1H chemical shift, 1H-15N dipolar coupling and 15N chemical shift interaction tensors in 15Nɛ-1-tryptophan and 15Nɛ-histidine sidechains determined by three dimensional solid state NMR spectroscopy of polycrystalline samples. J. Am. Chem. Soc. 119, 10,479–10,486.

    CAS  Google Scholar 

  148. Ketchem, R. R., Hu, W., and Cross, T. A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460.

    PubMed  CAS  Google Scholar 

  149. Cross, T. A., Tian, F., Cotten, M., Wang, J., Kovacs, F., and Fu, R. (1999) Correlation of structure, dynamics and function in the gramicidin channel by solid-state NMR spectroscopy. In Gramicidin and Related Ion Channel-Forming Peptides. Novartis Foundation Symposium 225.Wiley, Chichester, England, pp. 4–22.

    Google Scholar 

  150. Hu, W., Lazo, N. D., and Cross, T. A. (1995) Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel. Biochemistry 34, 14,138–14,146.

    PubMed  CAS  Google Scholar 

  151. Hu, W. and Cross, T. A. (1995) Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry 34, 14,147–14,155.

    PubMed  CAS  Google Scholar 

  152. Separovic, F., Ashida, J., Woolf, T., Smith, R., and Terao, T. (1999) Determination of chemical shielding tensor of an indole carbon and application to tryptophan orientation of a membrane peptide. Chem. Phys. Lett. 303, 493–498.

    CAS  Google Scholar 

  153. Koeppe, R. E., II, Killian, J. A., and Greathouse, D. V. (1994) Orientations of the tryptophan 9 and 11 sidechains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys. J. 66, 14–24.

    PubMed  CAS  Google Scholar 

  154. Cotten, M., Tian, C., Busath, D. D., Shirts, R. B., and Cross, T. A. (1999) Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry 38, 9185–9197.

    PubMed  CAS  Google Scholar 

  155. Wang, J. F., Kovacs, F., and Cross, T. A. (2001) Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci. 10, 2241–2250.

    PubMed  CAS  Google Scholar 

  156. Tian, C., Tobler, K., Lamb, R. A., Pinto, L. H., and Cross, T. A. (2002) Expression and initial structural insights from solid state NMR of the M2 proton channel from influenza A virus. Biochemistry 41, 11,294–11,300.

    PubMed  CAS  Google Scholar 

  157. Nishimura, K., Kim, S. G., Zhang, L., and Cross, T. A. (2002) The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR—1. Biochemistry 41, 13,170–13,177.

    PubMed  CAS  Google Scholar 

  158. Montal, M. and Opella, S. J. (2002) The structure of the M2 channel-lining segment from the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1565, 287–293.

    PubMed  CAS  Google Scholar 

  159. Marassi, F. M. and Opella, S. J. (2003) Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints. Protein Sci. 12, 403–411.

    PubMed  CAS  Google Scholar 

  160. Shon, K.-J., Kim, Y., Colnago, L. A., and Opella, S. L. (1991) NMR studies of the structure and dynamics of membrane-bound bacteriophage Pf1 coat protein. Science 252, 1303–1305.

    PubMed  CAS  Google Scholar 

  161. Nambudripad, R., Stark, W., Opella, S. J., and Makowski, L. (1991) Membranemediated assembly of filamentous bacteriophage Pf1 coat protein. Science 252, 1305–1308.

    PubMed  CAS  Google Scholar 

  162. Spudich, J. L., Yang, C. S., Jung, K. H., and Spudich, E. N. (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16, 365–392.

    PubMed  CAS  Google Scholar 

  163. Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K., and Stenkamp, R. E. (2001) Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761–7772.

    PubMed  CAS  Google Scholar 

  164. Menon, S. T., Han, M., and Sakmar, T. P. (2001) Rhodopsin: structural basis of molecular physiology. Physiol. Rev. 81, 1659–1688.

    PubMed  CAS  Google Scholar 

  165. Grobner, G., Choi, G., Burnett, I. J., Glaubitz, C., Verdegem, P.J., Lugtenburg, J., et al. (1998) Photoreceptor rhodopsin: structural and conformational study of its chromophore 11-cis retinal in oriented membranes by deuterium solid state NMR. FEBS Lett. 422, 201–204.

    PubMed  CAS  Google Scholar 

  166. Mollevanger, L. C. P. J., Kentgens, A. P. M., Pardoen, J. A., Courtin, J. M. L., Veeman, W. S., Lugtenburg, J., et al. (1987) High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Eur. J. Biochem. 163, 9–14.

    PubMed  CAS  Google Scholar 

  167. Spooner, P. J. R., Sharples, J. M., Verhoeven, M. A., Lugtenburg, J., Glaubitz, C., and Watts, A. (2002) Relative orientation between the beta-ionone ring and the polyene chain for the chromophore of rhodopsin in native membranes. Biochemistry 41, 7549–7555.

    PubMed  CAS  Google Scholar 

  168. Verdegem, P. J., Bovee-Geurts, G., De Grip, W. J., Lugtenburg, J., and De Groot, H. J. (1999) Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR. Biochemistry 38, 11,316–11,324.

    PubMed  CAS  Google Scholar 

  169. Verhoeven, M. A., Creemers, A. F., Bovee-Geurts, P. H., De Grip, W. J., Lugtenburg, J., and De Groot, H. J. (2001) Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin. Biochemistry 40, 3282–3288.

    PubMed  CAS  Google Scholar 

  170. Lansing, J. C., Hohwy, M., Jaroniec, C. P., Creemers, A.F., Lugtenburg, J., Herzfeld, J., et al. (2002) Chromophore distortions in the bacteriorhodopsin photocycle: evolution of the H-C14-C15-H dihedral angle measured by solid-state NMR. Biochemistry 41, 431–438.

    PubMed  CAS  Google Scholar 

  171. Hatcher, M. E., Hu, J. G., Belenky, M., Verdegem, P., Lugtenburg, J., Griffin, R. G., et al. (2002) Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Biophys. J. 82, 1017–1029.

    PubMed  CAS  Google Scholar 

  172. Edman, K., Nollert, P., Royant, A., Belrhali, H., Pebay-Peyroula, E., Hajdu, J., et al. (1999) High-resolution x-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature 401, 822–826.

    PubMed  CAS  Google Scholar 

  173. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55Å resolution. J. Mol. Biol. 291, 899–911.

    PubMed  CAS  Google Scholar 

  174. Sass, H., Büldt, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, J., et al. (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 40, 649–653.

    Google Scholar 

  175. Faham, S. and Bowie, J. U. (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6.

    PubMed  CAS  Google Scholar 

  176. Royant, A., Edman, K., Ursby, T., Pebay-Peyroula, E., Landau, E. M., and Neutze, R. (2001) Spectroscopic characterization of bacteriorhodopsin’s L-intermediate in 3D crystals cooled to 170K. Photochem. Photobiol. 74, 794–804.

    PubMed  CAS  Google Scholar 

  177. Schobert, B., Cupp-Vickery, J., Hornak, V., Smith, S., and Lanyi, J. (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J. Mol. Biol. 321, 715–726.

    PubMed  CAS  Google Scholar 

  178. Lanyi, J. and Schobert, B. (2002) Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J. Mol. Biol. 321, 727–737.

    PubMed  CAS  Google Scholar 

  179. Herzfeld, J. and Lansing, J. C. (2002) Magnetic resonance studies of the bacteriorhodopsin pump cycle. Annu. Rev. Biophys. Biomol. Struct. 31, 73–95.

    PubMed  CAS  Google Scholar 

  180. Seiff, F., Wallat, I., Ermann, P., and Heyn, M. P. (1985) A neutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 82, 3227–3231.

    PubMed  CAS  Google Scholar 

  181. Fitter, J., Lechner, R. E., and Dencher, N. A. (1999) Interactions of hydration water and biological membranes studied by neutron scattering. J. Phys. Chem. 103, 8036–8050.

    CAS  Google Scholar 

  182. Oesterhelt, D., Brauchle, C., and Hampp, N. (1991) Bacteriorhodopsin: a biological material for information processing. Q. Rev. Biophys. 24, 425–478.

    PubMed  CAS  Google Scholar 

  183. Ulrich, A. S., Heyn, M. P., and Watts, A. (1992) Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry 31, 10,390–10,399.

    PubMed  CAS  Google Scholar 

  184. Ulrich, A. S., Watts, A., Wallat, I., and Heyn, M. P. (1994) Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry 33, 5370–5375.

    PubMed  CAS  Google Scholar 

  185. Ulrich, A. S., Wallat, I., Heyn, M. P., and Watts, A. (1995) Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Nat. Struct. Biol. 2, 190–192.

    PubMed  CAS  Google Scholar 

  186. Moltke, S., Wallat, I., Sakai, N., Nakanishi, K., Brown, M. F., and Heyn, M. P. (1999) The angles between the C(1)-, C(5)-, and C(9)-methyl bonds of the retinylidene chromophore and the membrane normal increase in the M intermediate of bacteriorhodopsin: direct determination with solid-state (2)H NMR. Biochemistry 38, 11,762–11,772.

    PubMed  CAS  Google Scholar 

  187. Mcdermott, A. E., Creuzet, F., Gebhard, R., Van Der Hoef, K., Levitt, M. H., Herzfeld, J., et al. (1994) Determination of internuclear distances and the orientation of functional groups by solid-state NMR: rotational resonance study of the conformation of retinal in bacteriorhodopsin. Biochemistry 33, 6129–6136.

    PubMed  CAS  Google Scholar 

  188. Thompson, L. K., Mcdermott, A. E., Raap, J., Van Der Wielen, C. M., Lugtenburg, J., Herzfeld, J., et al. (1992) Rotational resonance NMR study of the active site structure in bacteriorhodopsin: conformation of the Schiff base linkage. Biochemistry 31, 7931–7938.

    PubMed  CAS  Google Scholar 

  189. Lakshimi, K. V., Auger, M., Raap, J., Lugtenburg, J., Griffin, R. G., and Herzfeld, J. (1993) Internuclear distance measurement in a reaction intermediate: solid-state 13C NMR rotational resonance determination of the Shiff base configuration in the M photointermediate of bacteriorhodopsin. J. Am. Chem. Soc. 115, 8515, 8516.

    Google Scholar 

  190. Saito, H., Tuzi, S., Yamaguchi, S., Tanio, M., and Naito, A. (2000) Conformation and backbone dynamics of bacteriorhodopsin revealed by 13C-NMR. Biochim. Biophys. Acta 1460, 39–48.

    PubMed  CAS  Google Scholar 

  191. Saito, H., Tuzi, S., and Naito, A. (1998) Empirical vs nonempirical evaluation of secondary structure of fibrous and membrane proteins. Annu. Rep. NMR Specrosc. 36, 79–121.

    CAS  Google Scholar 

  192. Saito, H., Tuzi, S., Tanio, M., and Naito, A. (2002) Dynamic aspect of membrane proteins and membrane associated peptides as revealed by 13C NMR: lessons from bacteriorhodopsin as an intact protein. Annu. Rep. NMR Spectrosc. 47, 39–108.

    CAS  Google Scholar 

  193. Yamaguchi, S., Yonebayashi, K., Konishi, H., Tuzi, S., Naito, A., Lanyi, J. K., et al. (2001) Cytoplasmic surface structure of bacteriorhodopsin consisting of interhelical loops and C-terminal alpha helix, modified by a variety of environmental factors as studied by (13)C-NMR. Eur. J. Biochem. 268, 2218–2228.

    PubMed  CAS  Google Scholar 

  194. Tuzi, S., Hasegawa, J., Kawaminami, R., Naito, A., and Saito, H. (2001) Regioselective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion. Biophys. J. 81, 425–434.

    PubMed  CAS  Google Scholar 

  195. Shoji, A., Ozaki, T., Fujito, T., Deguchi, K., Ando, S., and Ando, I. (1990) 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled L-alanine residues by 15N NMR, 2: secondary structure reflected in sigma22. J. Am. Chem. Soc. 112, 4693–4697.

    CAS  Google Scholar 

  196. Kamihira, M., Vosegaard, T., Mason, A. J., Straus, S., Nielsen, N. C., and Watts, A. (2004) Structural and orientational constraints on bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. J. Mol. Biol., submitted.

    Google Scholar 

  197. Bak, M., Rasmussen, J. T., and Nielsen, N. C. (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 147, 296–330.

    PubMed  CAS  Google Scholar 

  198. Bak, M., Schultz, R., Vosegaard, T., and Nielsen, N. C. (2002) Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. J. Magn. Reson. 154, 28–45.

    PubMed  CAS  Google Scholar 

  199. Subramaniam, S. and Henderson, R. (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657.

    PubMed  CAS  Google Scholar 

  200. Tuzi, S., Naito, A., and Saito, H. (1996) Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR. Eur. J. Biochem. 239, 294–301.

    PubMed  CAS  Google Scholar 

  201. Yamaguchi, S., Tuzi, S., Tanio, M., Naito, A., Lanyi, J. K., Needleman, R., et al. (2000) Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR. J. Biochem. (Tokyo) 127, 861–869.

    CAS  Google Scholar 

  202. Tuzi, S., Yamaguchi, S., Tanio, M., Konishi, H., Inoue, S., Naito, A., et al. (1999) Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys. J. 76, 1523–1531.

    PubMed  CAS  Google Scholar 

  203. Hu, J. G., Sun, B. Q., Petkova, A. T., Griffin, R. G., and Herzfeld, J. (1997) The predischarge chromophore in bacteriorhodopsin: a 15N solid-state NMR study of the L photointermediate. Biochemistry 36, 9316–9322.

    PubMed  CAS  Google Scholar 

  204. Hu, J. G., Sun, B. Q., Bizounok, M., Hatcher, M.E., Lansing, J. C., Raap, J., et al. (1998) Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study. Biochemistry 37, 8088–8096.

    PubMed  CAS  Google Scholar 

  205. Engelhard, M., Hess, B., Erneis, D., Metz, G., Kreutz, W., and Siebert, F. (1989) Magic angle sample spinning 13C nuclear magnetic resonance of isotopically labeled bacteriorhodopsin. Biochemistry 28, 3967–3975.

    PubMed  CAS  Google Scholar 

  206. Metz, G., Engelhard, M., and Siebert, F. (1992) High-resolution solid state 13C NMR of bacteriorhodopsin: characterization of [4–14C]Asp resonances. Biochemistry 31, 455–462.

    PubMed  CAS  Google Scholar 

  207. Metz, G., Siebert, F., and Engelhard, M. (1992) Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin: a solid-state 13C CP-MAS NMR investigation. FEBS Lett. 303, 237–241.

    PubMed  CAS  Google Scholar 

  208. Griffiths, J. M., Bennett, A. E., Engelhard, M., Siebert, F., Raap, J., Lugtenburg, J., et al. (2000) Structural investigation of the active site in bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton-pumping mechanism from solid state NMR. Biochemistry 39, 362–371.

    PubMed  CAS  Google Scholar 

  209. Kawase, Y., Tanio, M., Kira, A., Yamaguchi, S., Tuzi, S., Naito, A., et al. (2000) Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Biochemistry 39, 14,472–14,480.

    PubMed  CAS  Google Scholar 

  210. Tanio, M., Inoue, S., Yokota, K., Seki, T., Tuzi, S., Needleman, R., et al. (1999) Long-distance effects of site-directed mutations on backbone conformation in bacteriorhodopsin from solid state NMR of [1–13C]Val-labeled proteins. Biophys. J. 77, 431–442.

    PubMed  CAS  Google Scholar 

  211. Tanio, M., Tuzi, S., Yamaguchi, S., Kawaminami, R., Naito, A., Needleman, R., et al. (1999) Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator. Biophys. J. 77, 1577–1584.

    PubMed  CAS  Google Scholar 

  212. Helmle, M., Patzelt, H., Ockenfels, A., Gartner, W., Oesterhelt, D., and Bechinger, B. (2000) Refinement of the geometry of the retinal binding pocket in dark-adapted bacteriorhodopsin by heteronuclear solid-state NMR distance measurements. Biochemistry 39, 10,066–10,071.

    PubMed  CAS  Google Scholar 

  213. Petkova, A. T., Hatanaka, M., Jaroniec, C. P., Hu, J. G., Belenky, M., Verhoeven, M., et al. (2002) Tryptophan interactions in bacteriorhodopsin: a heteronuclear solid-state NMR study. Biochemistry 41, 2429–2437.

    PubMed  CAS  Google Scholar 

  214. Engelhard, M., Finkler, S., Metz, G., and Siebert, F. (1996) Solid-state C-13-NMR of [(3-C-13)Pro]bacteriorhodopsin and [(4-C-13)Pro]bacterhiorhodopsin-evidence for a flexible segment of the C-terminal tail. Eur. J. Biochem. 235, 526–533.

    PubMed  CAS  Google Scholar 

  215. Lansing, J. C., Hu, J. G., Belenky, M., Griffin, R. G., and Herzfeld, J. (2003) Solid-state NMR investigation of the buried X-Proline bonds of bacteriorhodopsin. Biochemistry 42, 3586–3593.

    PubMed  CAS  Google Scholar 

  216. Arakawa, T., Shimono, K., Yamaguchi, S., Tuzi, S., Sudo, Y., Kamo, N., et al. (2002) Dynamic structure of pharaonis phoborhodopsin (sensory rhodopsin II) and complex with a cognate truncated transducer as revealed by site-directed 13C solidstate NMR. FEBS Lett. 536, 237–240.

    Google Scholar 

  217. Sundle, M. and Blake, C. (1998) From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1–39.

    Google Scholar 

  218. Sundle, M., Serpell, L., Bartlam, M., Fraser, P., Pepys, M., and Blake, C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 33, 729–739. 219. Shirahama, T. and Cohen, A. S. (1967) High resolution electron microscopic analysis of the amyloid fibril. J. Cell Biol. 33, 729-739.

    Google Scholar 

  219. Shirahama, T. and Cohen, A. S. (1967) High resolution electron microscopic analysis of the amyloid fibril. J. Cell Biol. 33, 679-706.

    PubMed  CAS  Google Scholar 

  220. Cohen, A. S., Shirahama, T., and Skinner, M. (1982) Electron microscopy of amyloid. In Electron Microscopy of Protein (Harris, I. R., ed.). Academic Press, London, pp. 165–205.

    Google Scholar 

  221. Selkoe, D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498.

    PubMed  CAS  Google Scholar 

  222. Cottingham, M., Hollinshead, M., and Djt, V. (2002) Amyloid fibril formation by a synthetic peptide from a region of human acetylcholinesterase that is homologous to the Alzheimer’s amyloid-β peptide. Biochemistry 41, 13,539–13,547.

    PubMed  CAS  Google Scholar 

  223. Perutz, M. F., Finch, J. T., Berriman, J., and Lesk, A. (2002) Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99, 5591–5595.

    PubMed  CAS  Google Scholar 

  224. Sundle, M. and Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem. 50, 123–159.

    Google Scholar 

  225. Astbury, W. T., Dickinson, S., and Bailey, K. (1935) The X-ray interpretation of denaturation and the structure of seed globulins. Biochem. J. 29, 2351–2360.

    PubMed  CAS  Google Scholar 

  226. Lansbury, P. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342–3344.

    PubMed  CAS  Google Scholar 

  227. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., et al. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.

    PubMed  CAS  Google Scholar 

  228. Roher, A. E., O’Chaney, M., Kuo, Y., Webster, S. D., Stine, W. B., Haverhams, L. J., et al. (1996) Morphology and toxicity of Aβ-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271, 20,631–30,635.

    PubMed  CAS  Google Scholar 

  229. Barrow, C. J. and Zagorski, M. G. (1991) Solution structures of β-peptide and its constituent fragments relation to amyloid deposition. Science 253, 179–182.

    PubMed  CAS  Google Scholar 

  230. Zagorski, M. G. and Barrow, C. J. (1992) NMR studies of amyloid β-peptide: proton assignments, secondary structure and mechanism of an α-helix-β-sheet conversion for a homologous 28 residue N-terminal fragment. Biochemistry 31, 5621–563

    PubMed  CAS  Google Scholar 

  231. Talafous, K., Marcinowski, K., Klopman, G., and Zagorski, M. G. (1994) Solution structure of residues 1–28 of the amyloid β-peptide. Biochemistry 33, 7788–7796.

    PubMed  CAS  Google Scholar 

  232. Sorimachi, K. and Craik, D. (1994) Structural determination of extracellular fragments of amyloid proteins involved in Alzheimer’s disease and Dutch-type hereditary cerebral haemorrhage with amyloidosis. Eur. J. Biochem. 219, 237–251.

    PubMed  CAS  Google Scholar 

  233. Fletcher, F. and Keire, D. (1997) The interaction of β-amyloid protein fragment (12–28) with lipid environments. Protein Sci. 6, 666–675.

    PubMed  CAS  Google Scholar 

  234. Elagnaf, O., Guthrie, D., Walsh, D., and Irvine, G. (1998) The influence of the central region containing residues 19-25 on the aggregation properties and secondary structure of Alzheimer’s β-amyloid peptide. Eur. J. Biochem. 256, 560–569.

    CAS  Google Scholar 

  235. Kohno, T., Kobayashi, K., Maeda, T., Sato, K., and Takashima, A. (1996) Three-dimensional structures of amyloid β peptide (25-35) in membrane-mimicking environment. Biochemistry 35, 16,094–16,104.

    PubMed  CAS  Google Scholar 

  236. Soto, C., Castano, E., Frangione, B., and Inestrosa, N. (1995) The α-helical to β-sheet transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation. J. Biol. Chem. 270, 3063–306

    PubMed  CAS  Google Scholar 

  237. Coles, M., Bicknell, W., Watson, A., Fairlie, D., and Craik, D. (1998) Solution structure amyloid β-peptide (1–40) in a water-micelle environment: is the membrane-spanning domain where we think it is? Biochemistry 37, 11,064–11,077.

    PubMed  CAS  Google Scholar 

  238. Watson, A., Fairlie, D., and Craik, D. (1998) Does oxidation affect conformation switching? Biochemistry 37, 12,700–12,706.

    PubMed  CAS  Google Scholar 

  239. Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, K., Beyreuther, K., et al. (1995) Structure of amyloid Aβ(1–40)-peptide of Alzheimer’s disease. Eur. J. Biochem. 233, 293–298.

    PubMed  CAS  Google Scholar 

  240. Shao, H., Jao, S., Ma, J., and Zagorski, M. G. (1999) Solution structures of micelle-bound amyloid β-(1–40) and β-(1–42) peptides of Alzheimer’s disease. J. Mol. Biol. 285, 755–773

    PubMed  CAS  Google Scholar 

  241. Gregory, D., Mitchell, D., Stringer, J., Kihne, S., Shiels, J. C., Callahan, J., et al. (1995) Windowless dipolar recoupling the detection of weak dipolar couplings between spin 1/2 nuclei with large chemical shift anisotropies. Chem. Phys. Lett. 246, 654–663.

    CAS  Google Scholar 

  242. Pan, Y., Guillon, T., and Schaefer, J. (1990) Determination of C-N internuclear distances by rotational-echo double resonance NMR of solids. J. Magn. Reson. 90, 330–340.

    CAS  Google Scholar 

  243. Peersen, O. B., Wu, X. L., Kustanovich, I., and Smith, S. O. (1993) Variableamplitude cross-polarization MAS NMR. J. Magn. Reson. Ser. A 104, 334–339.

    CAS  Google Scholar 

  244. Ireland, P. S., Olson, L. W., and Brown, T. L. (1975) Spin echo double resonance detection of deuterium quadrupole resonance transitions in pentacarbonylmanganese-d. J. Am. Chem. Soc. 97, 3548, 3549.

    CAS  Google Scholar 

  245. Warren, W. S., Weitekamp, D. P., and Pines, A. (1980) Theory excitation of multiple-quantum transitions. J. Chem. Phys. 73, 2084–2099.

    CAS  Google Scholar 

  246. Yen, Y.-S. and Pines, A. (1983) Multiple quantum NMR in solids. J. Chem. Phys. 78, 3579–3582.

    CAS  Google Scholar 

  247. Baum, J., Munowitz, M., Garroway, A. N., and Pines, A. (1985) Multiple quantum dynamics in solid state NMR. J. Chem. Phys. 83, 2015–2025.

    CAS  Google Scholar 

  248. Suter, D., Liu, S. B., Baum, J., and Pines, A. (1987) Multiple quantum NMR excitation with a one-quantum Hamiltonian. Chem. Phys. Lett. 114, 103–109.

    CAS  Google Scholar 

  249. Benzinger, T. L. S., Gregory, D. M., Burkoth, T. S., Miller-Auer, H., Lynn, D. G., Botto, R. E., et al. (2000) Two-dimensional structure of beta-amyloid (10–35) fibrils. Biochemistry 39, 3491–3499.

    PubMed  CAS  Google Scholar 

  250. Antzutkin, O. and Tycko, R. (1999) High-order multiple quantum excitation in C-13 nuclear magnetic resonance spectroscopy of organic solids. J. Chem. Phys. 110, 2749–2752.

    CAS  Google Scholar 

  251. Antzutkin, O. N., Balbach, J. J., Leapman, R. D., Rizzo, N. W., Reed, J., and Tycko, R. (2000) Multiple quantum solid state NMR indicates a parallel, not antiparallel, organization of the beta-sheets in Alzheimer’s beta amyloid fibrils. Proc. Natl. Acad. Sci. USA 97, 13,045–13,050.

    PubMed  CAS  Google Scholar 

  252. Balbach, J. J., Petkova, A. T., Oyle, N. A., Antzutkin, O. N., Gordon, D. J., Meredith, S.C., et al. (2002) Supramolecular structure in full-length Alzheimer’s β-amyloid fibrils evidence for a parallel β-sheet organization from solid state NMR. Biophys. J. 83, 1205–1216.

    PubMed  CAS  Google Scholar 

  253. Grobner, G., Glaubitz, C., Williamson, P. T. F., Hadingham, T., and Watts, A. (2001) Structural insight into the interaction of amyloid-β peptide with biological membranes by solid state NMR. Focus Struct. Biol. 1, 203–214.

    CAS  Google Scholar 

  254. Suwelack, D., Rothwell, W. P., and Waugh, J. S. (1980) Slow molecular motion detected in the NMR spectra of rotating solids. J. Chem. Phys. 73, 2559–2569.

    CAS  Google Scholar 

  255. Rothwell, W. P. and Waugh, J. S. (1981) Transverse relaxation of dipolar coupled spin system under rf irradiation: detecting motions in solid. J. Chem. Phys. 74, 2721–2732.

    CAS  Google Scholar 

  256. Nishimura, K., Fu, R., and Cross, T. A. (2001) The effect of rf inhomogeneity on heteronuclear dipolar recoupling in solid state NMR: practical performance of SFAM and REDOR. J. Magn. Reson. 152, 227–233.

    CAS  Google Scholar 

  257. Vosegaard, T. and Nielsen, N. C. (2002) Towards high-resolution solid-state NMR on large uniformly 15N-and [13C, 15N]-labeled membrane proteins in oriented lipid bilayers. J. Biomol. NMR 22, 225–247.

    PubMed  CAS  Google Scholar 

  258. Fu, R., Tian, C., and Cross, T. A. (2002) NMR spin locking of proton magnetization under a frequency-switched Lee-Goldburg pulse sequence. J. Magn. Reson. 154, 130–135.

    PubMed  CAS  Google Scholar 

  259. Fu, R., Tian, C., Kim, H., Smith, S. A., and Cross, T. A. (2002) The effect of Hartmann-Hahn mismatching on polarization inversion spin exchange at the magic angle. J. Magn. Reson. 159, 167–174.

    PubMed  CAS  Google Scholar 

  260. Nevzorov, A. A. and Opella, S. J. (2003) Structural fitting of PISEMA spectra of aligned proteins. J. Magn. Reson. 160, 33–39.

    PubMed  CAS  Google Scholar 

  261. Mesleh, M.F., Lee, S., Veglia, G., Thiriot, D., Marassi, F.M., and Opella, S.J. (2003) Dipolar waves map the structure and topology of helices in membrane proteins. J. Am. Chem. Soc. 125, 8928–8935.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Watts, A., Straus, S.K., Grage, S.L., Kamihira, M., Lam, Y.H., Zhao, X. (2004). Membrane Protein Structure Determination Using Solid-State NMR. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:403

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:403

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics