Skip to main content

NMR Studies of Protein-Nucleic Acid Interactions

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

Protein–DNA and protein–RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein–protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucletide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8789.

    Article  PubMed  CAS  Google Scholar 

  2. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  3. Price, S. R., Oubridge, C., Varani, G., and Nagai, K. (1998) Preparation of RNAprotein complexes for X-ray crystallography and NMR. In RNA-Protein Interaction: A Practical Approach (Smith, C. W. R., ed.). Oxford University Press, Oxford, pp. 37–74.

    Google Scholar 

  4. Koshlap, K. M., Guenther, R., Sochacka, E., Malkiewicz, A., and Agris, P. F. (1999) A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe TΨC domain. Biochemistry 38, 8647–8656.

    Article  PubMed  CAS  Google Scholar 

  5. Sengupta, R., Vainauskas, S., Yaruan, C., et al. (2000) Modified construct of the tRNA TΨC domain to probe substrate conformational requirements of the m1A58 and m5U54 tRNA methyltransferase. Nucleic Acids Res. 28, 1374–1380.

    Article  PubMed  CAS  Google Scholar 

  6. Kao, C., Zheng, M., and Rudisser, S. (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ ends of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272.

    Article  PubMed  CAS  Google Scholar 

  7. Price, S. R., Ito, N., Oubridge, C., Avis, J. M., and Nagai, K. (1995) Crystallization of RNA-protein complexes I: a novel method for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408.

    Article  PubMed  CAS  Google Scholar 

  8. Whoriskey, S. K., Usman, N., and Szostak, J. W. (1995) Total chemical synthesis of a ribozyme derived from a group I intron. Proc. Nat. Acad. Sci. USA 92, 2465–2469.

    Article  PubMed  CAS  Google Scholar 

  9. Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., et al. (1995) Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684.

    Article  PubMed  CAS  Google Scholar 

  10. Sproat, B., Colonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., et al. (1995) An efficient method for the isolation and purification of oligoribonucleotides. Nucleos. Nucleot. 14, 255–273.

    Article  CAS  Google Scholar 

  11. Schmidt, S., Grenfell, R. L., Fogg, J., Smith, T. V., Grasby, A., Mersmann, K., et al. (1996) Solid phase synthesis of oligoribonucleotides containing site-specific modifications. In Innovation and Perspectives in Solid Phase Synthesis and Combinatorial Libraries 1996 (Proceedings of the 4 th International Symposium, Edinburgh). (Epton, R. ed.), Mayflower, Birmingham, UK, pp. 11–18.

    Google Scholar 

  12. Scaringe, S. A. (2000) Advanced 5′-silyl-2′-orthoester approach to RNA oligonucleotide synthesis. Methods Enzymol. 317, 3–18

    Article  PubMed  CAS  Google Scholar 

  13. Scaringe, S. A. (2001) RNA oligonucleotide synthesis via 5′-silyl-2′-orthoester chemistry. Methods 23, 206–217

    Article  PubMed  CAS  Google Scholar 

  14. Batey, R. T., Inada, M., Kujawinski, E., Puglisi, J. D., and Williamson, J. R. (1992) Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 20, 4515–4523.

    Article  PubMed  CAS  Google Scholar 

  15. Batey, R. T., Battiste, J. L., and Williamson, J. R. (1995) Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 261, 300–322.

    Article  PubMed  CAS  Google Scholar 

  16. Santalucia, J. J., Shen, L. X., Cai, Z., Lewis, H., and Tinoco, I. J. (1995) Synthesis and NMR of RNA with selective isotopic enrichment in the bases. Nucleic Acids Res. 23, 4913–4921.

    Article  PubMed  CAS  Google Scholar 

  17. Görlach, M., Wittekind, M., Beckman, R. A., Mueller, L., and Dreyfuss, G. (1992) Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 11, 3289–3295.

    PubMed  Google Scholar 

  18. Howe, P. W. A., Nagai, K., Neuhaus, D., and Varani, G. (1994) NMR studies of U1 snRNA recognition by the N-terminal RNP domain of the human U1A protein. EMBO J. 13, 3873–3881.

    PubMed  CAS  Google Scholar 

  19. Ramos, A., Kelly, G., Hollingworth, D., Pastore, A., and Frenkiel, T. (2000) Mapping the interfaces of protein-nucleic acid complexes using cross-saturation. J. Am. Chem. Soc. 122, 11,311–11,314.

    Article  CAS  Google Scholar 

  20. Lane, A. N., Kelly, G., Ramos, A., and Frenkiel, T. A. (2001) Determining binding sites in protein-nucleic acid complexes by cross-saturation. J. Biomol. NMR 21, 127–139.

    Article  PubMed  CAS  Google Scholar 

  21. Kalodimos, C. G., Boelens, R., and Kaptein, R. (2002) A residue-specific view of the association and dissociation pathway in protein-DNA recognition. Nat. Struct. Biol. 9, 193–197.

    PubMed  CAS  Google Scholar 

  22. Arumugam, S., Hemme, C. L., Yoshida, N., Suzuki, K., Nagase, H., Berjanskii, M., et al. (1998) TIMP-1 contact sites and perturbations of stromelysin 1 mapped by NMR and a paramagnetic surface probe. Biochemistry 37, 9650–9657.

    Article  PubMed  CAS  Google Scholar 

  23. Ramos, A. and Varani, G. (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA, J. Am. Chem. Soc. 120, 10,992–10,993.

    Article  CAS  Google Scholar 

  24. Gopalan, V., Kuhne, H., Biswas, R., Li, H., Brudvig, G. W., and S. Altman (1999) Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy. Biochemistry 38, 1705–1714.

    Article  PubMed  CAS  Google Scholar 

  25. Zuiderweg, E. R. P. (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41, 1–7.

    Article  PubMed  CAS  Google Scholar 

  26. Pellecchia, M., Montgomery, D. L., Stevens, S. Y., Vander Koii, C. W., Feng, H. P., Gierasch, L. M., et al. (2000) Structural insights into substrate binding by the molecular chaperone DnaK. Nat. Struct. Biol. 7, 298–303.

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y., and Shimada, I. (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223.

    Article  PubMed  CAS  Google Scholar 

  28. Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphyloccocal nuclease, I: paramagnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol. 268, 158–169.

    Article  PubMed  CAS  Google Scholar 

  29. Battiste, J. L. and Wagner, G. (2000) Utilization of site-directed spin labeling and high resolution heteronuclear NMR for global fold determination of large proteins with limited NOE data. Biochemistry 39, 5355–5365.

    Article  PubMed  CAS  Google Scholar 

  30. Gochin, M. (2000) A high resolution structure of a DNA-chromomycin-Co(II) complex determined from pseudocontact shifts in nuclear magnetic resonance. Structure 8, 441–452.

    Article  PubMed  CAS  Google Scholar 

  31. Edwards, T. E., Okonogi, T. M., Robinson, B. H., and Sigurdsson, S. T. (2001) Site-specific incorporation of nitroxide spin labels into internal sites of the TAR RNA. Structure-dependent dynamics of RNA by EPR spectroscopy. J. Am. Chem. Soc. 123, 1527, 1528.

    Article  PubMed  CAS  Google Scholar 

  32. Otting, G. and Wüthrich, K. (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(ω12) double filters. J. Magn. Reson. 85, 586–594

    CAS  Google Scholar 

  33. Otting, G. and Wüthrich, K. (1990) Heteronuclear filters in two-dimensional [1H-1H]-NMR spectroscopy: combined use with isotope labeling for studies of macromolecular conformation and intermolecular interactions. Q. Rev. Biophys. 23, 39–96.

    Article  PubMed  CAS  Google Scholar 

  34. Gemmecker, G., Olejniczak, E. T., and Fesik, S. W. (1992) An improved method for selectively observing protons attached to 12C in the presence of 1H-13C spin pairs. J. Magn. Reson. 96, 199–204.

    CAS  Google Scholar 

  35. Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R., and Kay, L. E. (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721.

    Article  CAS  Google Scholar 

  36. Dingley, A. J. and Grzesiek, S. (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 120, 8293–8297.

    Article  CAS  Google Scholar 

  37. Hennig, M. and Williamson, J. R. (2000) Detection of N-H··N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res. 28, 1585–1593.

    Article  PubMed  CAS  Google Scholar 

  38. Wohnert, J., Dingley, A. J., Stoldt, M., Gorlach, M., Grzesiek, S., and Brown, L. R. (1999) Direct identification of NH... N hydrogen bonds in noncanonical base pairs of RNA by NMR spectroscopy. Nucleic Acids Res. 27, 3104–3110.

    Article  PubMed  CAS  Google Scholar 

  39. Liu, A., Majumdar, A., Jiang, F., Chernichenko, N., Skripkin, E., and Patel, D. J. (2000) NMR detection of intermolecular NH-N hydrogen bonds in the human T cell leukemia virus-1 Rex peptide-RNA aptamer complex. J. Am. Chem. Soc. 122, 11,226–11,227.

    Article  CAS  Google Scholar 

  40. Allain, F. H.-T. and Varani, G. (1997) How accurately and precisely can RNA structure be determined by NMR? J. Mol. Biol. 267, 338–351.

    Article  PubMed  CAS  Google Scholar 

  41. Allain, F. H.-T., Gubser, C. C., Howe, P. W. A., Nagai, K., Neuhaus, D., and Varani, G. (1996) Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature 380, 646–650.

    Article  PubMed  CAS  Google Scholar 

  42. Tjandra, N. and Bax, A. (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  43. Bayer, P., Varani, L., and Varani, G. (1999) Refinement of the structure of protein-RNA complexes by residual dipolar coupling analysis. J. Biomol. NMR 14, 149–155.

    Article  PubMed  CAS  Google Scholar 

  44. Wu, B., Arumugam, S., Gao, G., Lee, I., Semenchenko, V., Huang,., et al. (2000) NMR structure of tissue inhibitor of metalloproteinases-1 implicates localized induced fit in recognition of matrix metalloproteinases. J. Mol. Biol. 295, 257–268.

    Article  PubMed  CAS  Google Scholar 

  45. Hansen, M. R., Mueller, L., and Pardi, A. (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  46. Bondensgaard, K., Mollova, E. T., and Pardi, A. (2002) The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 41, 11,532–11,542.

    Article  PubMed  CAS  Google Scholar 

  47. Mollova, E. T., Hansen, M. R., and Pardi, A. (2000) Global structure of RNA determined with residual dipolar couplings. J. Am. Chem. Soc. 122, 11,561–11,562.

    Article  CAS  Google Scholar 

  48. Ruckert, M. and Otting, G. (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797.

    Article  Google Scholar 

  49. Andersson, P., Nordstrand, K., Sunnerhagen, M., Liepinsh, E., Turovskis, I., and Otting, G. (1998) Heteronuclear correlation experiments for the determination of one-bond coupling constants. J. Biomol. NMR 11, 445–450.

    Article  PubMed  CAS  Google Scholar 

  50. Ottiger, M., Delaglio, F., and Bax, A. (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378.

    Article  PubMed  CAS  Google Scholar 

  51. Leeper, T. C., Martin, M. B., Kim, H., Cox, S., Semenchenkio, V., Schmidt, F. J., and Van Doren, S. R. (2002) Structure of the UGAGAU hexaloop that braces Bacillus RNase P for action. Nat. Struct. Biol. 9, 397–403.

    PubMed  CAS  Google Scholar 

  52. Warren, J. J. and Moore, P. B. (2001) Application of dipolar couplings data to the refinement of the solution structure of the sarcin-ricin loop RNA. J. Biomol. NMR 20, 311–323.

    Article  PubMed  CAS  Google Scholar 

  53. Clore, G. M., Gronenborn, A. M., and Bax, A. (1998) A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216–221.

    Article  PubMed  CAS  Google Scholar 

  54. Al-Hashimi, H. M., Gorin, A., Majumdar, A., and Patel, D. J. (2001) Alignment of the HTLV-1 Rex peptide bound to its target RNA aptamer from magnetic field-induced residual dipolar couplings and intermolecular hydrogen Bonds. J. Am. Chem. Soc. 123, 3179, 3180.

    Article  PubMed  CAS  Google Scholar 

  55. Al-Hashimi, H. M., Gosser, Y., Gorin, A., Hu, W., Majumdar, A., and Patel, D. J. (2002) Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings. J. Mol. Biol. 315, 95–102.

    Article  PubMed  CAS  Google Scholar 

  56. Al-Hashimi, H. M., Pitt, S. W., Majumdar, A., Xu, W., and Patel, D. J. (2003) Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings. J. Mol. Biol. 329, 867–873.

    Article  PubMed  CAS  Google Scholar 

  57. Mao, H., White, S. A., and Williamson, J. R. (1999) A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex. Nat. Struct. Biol. 6, 1139–1147.

    Article  PubMed  CAS  Google Scholar 

  58. Wimberly, B., Varani, G., and Tinoco, I., Jr. (1993) The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry 32, 1078–1087.

    Article  PubMed  CAS  Google Scholar 

  59. Allain, F. H.-T. and Varani, G. (1995) Structure of the P1 helix from group I self splicing introns. J. Mol. Biol. 250, 333–353.

    Article  PubMed  CAS  Google Scholar 

  60. Howe, P. W. A., Allain, F. H.-T., Varani, G., and Neuhaus, D. (1998) Determination of the NMR structure of the complex between U1A protein and its RNA polyadenylation inhibition element. J. Biomol. NMR 11, 59–84.

    Article  PubMed  CAS  Google Scholar 

  61. Varani, L., Spillantini, M. G., Goedert, M., and Varani, G. (2000) Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics. Nucleic Acids Res. 28, 710–719.

    Article  PubMed  CAS  Google Scholar 

  62. Brünger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography and NMR system (CNS): a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.

    Google Scholar 

  63. Gubser, C. C. and Varani, G. (1996) Structure of the polyadenylation regulatory element of the human U1A pre-mRNA 3′-untranslated region and interaction with the U1A protein. Biochemistry 35, 2253–2267.

    Article  PubMed  CAS  Google Scholar 

  64. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298.

    Article  PubMed  Google Scholar 

  65. Stein, E. G., Rice, L. M., and Brunger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Varani, G., Chen, Y., Leeper, T.C. (2004). NMR Studies of Protein-Nucleic Acid Interactions. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:289

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:289

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics