Skip to main content

Structure Determination of Protein Complexes by NMR

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 278))

Abstract

This chapter describes nuclear magnetic resonance (NMR) methods that can be used to determine the structures of protein complexes. Many of these techniques are also applicable to other systems (e.g., protein-nucleic acid complexes). In the first section, we discuss methodologies for optimizing the sample conditions for the study of complexes. This is followed by a description of the methods that can be used to map interfaces when a full structure determination of the complex is not appropriate or not possible. We then describe experimental approaches for resonance assignment in complexes, these are essentially the same as those for isolated proteins. Subheading 6. describes the different types of so-called X-filtered NMR experiments that have been devised to separate and selectively observe either inter- or intramolecular structural information. These filtered NMR experiments are then exploited in the experimental strategies for structure determination of either protein complexes or homodimeric proteins. This is followed by a description of the calculation of their structures. Finally, we present case studies from three projects carried out in our laboratory, where we successfully used the methods presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lepre, C. A. and Moore, J. M. (1998) Microdrop screening: a rapid method to optimize solvent conditions for NMR spectroscopy of proteins. J. Biomol. NMR 12, 493–499.

    Article  PubMed  CAS  Google Scholar 

  2. Bagby, S., Tong, K. I., and Ikura, M. (2001) Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods Enzymol. 339, 20–41.

    Article  PubMed  CAS  Google Scholar 

  3. Eftink, M. R. (1997) Fluorescence methods for studying equilibrium macromolecule-ligand interactions. Methods Enzymol. 278, 221–257.

    Article  PubMed  CAS  Google Scholar 

  4. Lofas, S. and Johnsson, B. (1990) A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Chem. Commun. 21, 1526–1528.

    Article  Google Scholar 

  5. Laue, T. M. and Stafford, W. F. (1999) Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75–100.

    Article  PubMed  CAS  Google Scholar 

  6. Leavitt, S. and Freire, E. (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566.

    Article  PubMed  CAS  Google Scholar 

  7. Hubbard, S. J. (1998) The structural aspects of limited proteolysis of native proteins. Biochim. Biophys. Acta. 1382, 191–206.

    Article  PubMed  CAS  Google Scholar 

  8. Emerson, S. D., Madison, V. S., Palermo, R. E., Waugh, D. S., Scheffler, J. E., Tsao, K. L., et al. (1995) Solution structure of the Ras-binding domain of C-Raf-1 and identification of its Ras interaction surface. Biochemistry 34, 6911–6918.

    Article  PubMed  CAS  Google Scholar 

  9. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  10. Hubbard, S. J. and Thornton, J. M. (1993) NACCESS. Department of Biochemistry and Molecular Biology, University College London, London.

    Google Scholar 

  11. Clore, G. M. and Gronenborn, A. M. (1982) Theory and applications of the transferred nuclear Overhauser effect to the study of the conformations of small ligands bound to proteins. J. Magn. Reson. 48, 402–417.

    CAS  Google Scholar 

  12. Clore, G. M. and Gronenborn, A. M. (1983) Theory of the time-dependent transferred nuclear Overhauser effect—applications to structural-analysis of ligand protein complexes in solution. J. Magn. Reson. 53, 423–442.

    CAS  Google Scholar 

  13. Blommers, M. J. J., Stark, W., Jones, C. E., Head, D., Owen, C. E., and Jahnke, W. (1999) Transferred cross-correlated relaxation complements transferred NOE: structure of an IL-4R-derived peptide bound to STAT-6. J. Am. Chem. Soc. 121, 1949–1953.

    Article  CAS  Google Scholar 

  14. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y., and Shimada, I. (2000) A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 7, 220–223.

    Article  PubMed  CAS  Google Scholar 

  15. Dominguez, C., Boelens, R., and Bonvin, A. (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  16. Clore, G. M. and Schwieters, C. D. (2003) Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from H-1(N)/N-15 chemical shift mapping and backbone N-15-H-1 residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J. Am. Chem. Soc. 125, 2902–2912.

    Article  PubMed  CAS  Google Scholar 

  17. Markley, J. L. (1975) Observation of histidine residues in proteins by nuclear magnetic resonance spectroscopy. Acc. Chem. Res. 8, 70–80.

    Article  CAS  Google Scholar 

  18. Pelton, J. G., Torchia, D. A., Meadow, N. D., and Roseman, S. (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated III(Glc), a signal-transducing protein from Escherichia-coli, using 2-dimensional heteronuclear NMR techniques. Protein Sci. 2, 543–558.

    Article  PubMed  CAS  Google Scholar 

  19. Gooley, P. R., Johnson, B. A., Marcy, A. I., Cuca, G. C., Salowe, S. P., Hagmann, W. K., et al. (1993) Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR. Biochemistry 32, 13,098–13,108.

    Article  PubMed  CAS  Google Scholar 

  20. Yamazaki, T., Nicholson, L. K., Torchia, D. A., Wingfield, P., Stahl, S. J., Kaufman, J. D., et al. (1994) NMR and X-Ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a nonpeptide cyclic urea-based inhibitor. J. Am. Chem. Soc. 116, 10,791–10,792.

    Article  CAS  Google Scholar 

  21. Qin, J., Clore, G. M., and Gronenborn, A. M. (1996) Ionization equilibria for sidechain carboxyl groups in oxidized and reduced human thioredoxin and in the complex with its target peptide from the transcription factor NF kappa B. Biochemistry 35, 7–13.

    Article  PubMed  CAS  Google Scholar 

  22. Jeng, M. F. and Dyson, H. J. (1996) Direct measurement of the aspartic acid 26 pK(a) for reduced Escherichia coli thioredoxin by C-13 NMR. Biochemistry 35, 1–6.

    Article  PubMed  CAS  Google Scholar 

  23. Otting, G., Liepinsh, E., and Wuthrich, K. (1991) Protein hydration in aqueous-solution. Science 254, 974–980.

    Article  PubMed  CAS  Google Scholar 

  24. Grzesiek, S. and Bax, A. (1993) Measurement of amide proton-exchange rates and NOEs with water in C-13/N-15-enriched calcineurin-B. J. Biomol. NMR 3, 627–638.

    PubMed  CAS  Google Scholar 

  25. Clore, G. M., Bax, A., Omichinski, J. G., and Gronenborn, A. M. (1994) Localization of bound water in the solution structure of a complex of the erythroid transcription factor GATA-1 with DNA. Structure 2, 89–94.

    Article  PubMed  CAS  Google Scholar 

  26. Grzesiek, S., Bax, A., Nicholson, L. K., Yamazaki, T., Wingfield, P., Stahl, S. J., et al. (1994) NMR evidence for the displacement of a conserved interior water molecule in HIV protease by a nonpeptide cyclic urea-based inhibitor. J. Am. Chem. Soc. 116, 1581, 1582.

    Article  CAS  Google Scholar 

  27. Jasanoff, A., Wagner, G., and Wiley, D. C. (1998) Structure of a trimeric domain of the MHC class II-associated chaperonin and targeting protein Ii. EMBO J. 17, 6812–6818.

    Article  PubMed  CAS  Google Scholar 

  28. Kogler, H., Sorensen, O. W., Bodenhausen, G., and Ernst, R. R. (1983) Low-pass J-filters—suppression of neighbor peaks in heteronuclear relayed correlation spectra. J. Magn. Reson. 55, 157–163.

    CAS  Google Scholar 

  29. Ikura, M. and Bax, A. (1992) Isotope-filtered 2D NMR of a protein peptide complex—study of a skeletal-muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440.

    Article  CAS  Google Scholar 

  30. Lee, W., Revington, M. J., Arrowsmith, C., and Kay, L. E. (1994) A pulsed-field gradient isotope-filtered 3D C-13 HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular-complexes. FEBS Lett. 350, 87–90.

    Article  PubMed  CAS  Google Scholar 

  31. Vuister, G. W., Kim, S. J., Wu, C., and Bax, A. (1994) 2D and 3D NMR-study of phenylalanine residues in proteins by reverse isotopic labeling. J. Am. Chem. Soc. 116, 9206–9210.

    Article  CAS  Google Scholar 

  32. Otting, G., Senn, H., Wagner, G., and Wuthrich, K. (1986) Editing of 2D H-1-NMR spectra using X half-filters—combined use with residue-selective N-15 labeling of proteins. J. Magn. Reson. 70, 500–505.

    CAS  Google Scholar 

  33. Otting, G. and Wuthrich, K. (1989) Extended heteronuclear editing of 2D H-1-NMR spectra of isotope-labeled proteins, using the X(omega-1, omega-2) double half filter. J. Magn. Reson. 85, 586–594.

    CAS  Google Scholar 

  34. Otting, G. and Wuthrich, K. (1990) Heteronuclear filters in 2-dimensional [H-1, H-1] NMR-spectroscopy—combined use with isotope labeling for studies of macromolecular conformation and intermolecular interactions. Q. Rev. Biophys. 23, 39–96.

    Article  PubMed  CAS  Google Scholar 

  35. Wider, G., Weber, C., and Wuthrich, K. (1991) Proton proton Overhauser effects of receptor-bound cyclosporine-A observed with the use of a heteronuclear-resolved half-filter experiment. J. Am. Chem. Soc. 113, 4676–4678.

    Article  CAS  Google Scholar 

  36. Folmer, R. H. A., Hilbers, C. W., Konings, R. N. H., and Hallenga, K. (1995) A C-13 double-filtered NOESY with strongly reduced artifacts and improved sensitivity. J. Biomol. NMR 5, 427–432.

    Article  CAS  Google Scholar 

  37. Folkers, P. J. M., Folmer, R. H. A., Konings, R. N. H., and Hilbers, C. W. (1993) Overcoming the ambiguity problem encountered in the analysis of nuclear Overhauser magnetic-resonance spectra of symmetrical dimer proteins. J. Am. Chem. Soc. 115, 3798, 3799.

    Article  CAS  Google Scholar 

  38. Burgering, M., Boelens, R., and Kaptein, R. (1993) Observation of intersubunit NOEs in a dimeric P22 Mnt repressor mutant by a time-shared [N-15,C-13] double half-filter technique. J. Biomol. NMR 3, 709–714.

    Article  CAS  Google Scholar 

  39. Zwahlen, C., Legault, P., Vincent, S. J. F., Greenblatt, J., Konrat, R., and Kay, L. E. (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721.

    Article  CAS  Google Scholar 

  40. Mueller, L., Kumar, A., and Ernest, R. R. (1975) Two-dimensional carbon-13 NMR spectroscopy. J. Chem. Phys. 63, 5490, 5491.

    Article  Google Scholar 

  41. Melacini, G. (2000) Separation of intra-and intermolecular NOEs through simultaneous editing and J-compensated filtering: a 4D quadrature-free constant-time J-resolved approach. J. Am. Chem. Soc. 122, 9735–9738.

    Article  CAS  Google Scholar 

  42. Hwang, T. L. and Shaka, A. J. (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. Ser. A 112, 275–279.

    Article  CAS  Google Scholar 

  43. Solomon, I. and Bloembergen, N. (1956) Nuclear magnetic interactions in the HF molecule. J. Chem. Phys. 25, 261–266.

    Article  CAS  Google Scholar 

  44. Krugh, T. R. (1976) in Spin Labeling: Theory and Applications (Berliner, L. J., ed.). Academic Press, New York, pp. 339–372.

    Google Scholar 

  45. Kosen, P. A. (1989) Spin labeling of proteins. Methods Enzymol. 177, 86–121.

    Article  PubMed  CAS  Google Scholar 

  46. Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease, 1: paramagnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol. 268, 158–169.

    Article  PubMed  CAS  Google Scholar 

  47. Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease,2: distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J. Mol. Biol. 268, 170–184.

    Article  PubMed  CAS  Google Scholar 

  48. Battiste, J. L. and Wagner, G. (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39, 5355–5365.

    Article  PubMed  CAS  Google Scholar 

  49. Gaponenko, V., Altieri, A. S., Li, J., and Byrd, R. A. (2002) Breaking symmetry in the structure determination of (large) symmetric protein dimers. J. Biomol. NMR 24, 143–148.

    Article  PubMed  CAS  Google Scholar 

  50. Ogura, K., Terasawa, H., and Inagaki, F. (1996) An improved double-tuned and isotope-filtered pulse scheme based on a pulsed field gradient and a wide-band inversion shaped pulse. J. Biomol. NMR 8, 492–498.

    Article  PubMed  CAS  Google Scholar 

  51. Wider, G., Weber, C., Traber, R., Widmer, H., and Wuthrich, K. (1990) Use of a double-half-filter in 2-dimensional 1H nuclear-magnetic-resonance studies of receptor-bound cyclosporine. J. Am. Chem. Soc. 112, 9015, 9016.

    Article  CAS  Google Scholar 

  52. Skrynnikov, N. R., Goto, N. K., Yang, D. W., Choy, W. Y., Tolman, J. R., Mueller, G.A., et al. (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J. Mol. Biol. 295, 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  53. Walters, K. J., Matsuo, H., and Wagner, G. (1997) A simple method to distinguish intermonomer nuclear Overhauser effects in homodimeric proteins with C-2 symmetry. J. Am. Chem. Soc. 119, 5958, 5959.

    Article  CAS  Google Scholar 

  54. Xia, Y. L., Sze, K. H., and Zhu, G. (2000) Transverse relaxation optimized 3D and 4D N-15/N-15 separated NOESY experiments of N-15 labeled proteins. J. Biomol. NMR 18, 261–268.

    Article  PubMed  CAS  Google Scholar 

  55. Venters, R. A., Metzler, W. J., Spicer, L. D., Mueller, L., and Farmer, B. T. (1995) Use of H-1(N)-H-1(N) NOEs to determine protein global folds in perdeuterated proteins. J. Am. Chem. Soc. 117, 9592, 9593.

    Article  CAS  Google Scholar 

  56. Mal, T. K., Matthews, S. J., Kovacs, H., Campbell, I. D., and Boyd, J. (1998) Some NMR experiments and a structure determination employing a {N-15,H-2} enriched protein. J. Biomol. NMR 12, 259–276.

    Article  PubMed  CAS  Google Scholar 

  57. Walters, K. J., Dayie, K. T., Reece, R. J., Ptashne, M., and Wagner, G. (1997) Structure and mobility of the PUT3 dimer. Nat. Struct. Biol. 4, 744–750.

    Article  PubMed  CAS  Google Scholar 

  58. Ferentz, A. E., Opperman, T., Walker, G. C., and Wagner, G. (1997) Dimerization of the UmuD’ protein in solution and its implications for regulation of SOS mutagenesis. Nat. Struct. Biol. 4, 979–983.

    Article  PubMed  CAS  Google Scholar 

  59. Caffrey, M., Cai, M. L., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., et al. (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 17, 4572–4584.

    Article  PubMed  CAS  Google Scholar 

  60. Nooren, I. M. A., Kaptein, R., Sauer, R. T., and Boelens, R. (1999) The tetramerization domain of the Mnt repressor consists of two right-handed coiled coils. Nat. Struct. Biol. 6, 755–759.

    Article  PubMed  CAS  Google Scholar 

  61. Jasanoff, A. (1998) An asymmetric deuterium labeling strategy to identify interprotomer and intraprotomer NOEs in oligomeric proteins. J. Biomol. NMR 12, 299–306.

    Article  PubMed  CAS  Google Scholar 

  62. Nilges, M. (1993) A calculation strategy for the structure determination of symmetrical dimers by H-1-NMR. Proteins 17, 297–309.

    Article  PubMed  CAS  Google Scholar 

  63. O’Donoghue, S. I., Junius, F. K., and King, G. F. (1993) Determination of the structure of symmetrical coiled-coil proteins from NMR dta—application of the leucine-zipper proteins Jun and Gcn4. Protein Eng. 6, 557–564.

    Article  PubMed  Google Scholar 

  64. O’Donoghue, S. I., Chang, X. Q., Abseher, R., Nilges, M., and Led, J. J. (2000) Unraveling the symmetry ambiguity in a hexamer: calculation of the R-6 human insulin structure. J. Biomol. NMR 16, 93–108.

    Article  PubMed  Google Scholar 

  65. Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints-automated assignment of ambiguous NOE crosspeaks and disulfide connectivities. J. Mol. Biol. 245, 645–660.

    Article  PubMed  CAS  Google Scholar 

  66. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.

    Article  PubMed  CAS  Google Scholar 

  67. Riek, R., Wider, G., Pervushin, K., and Wuthrich, K. (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc. Natl. Acad. Sci. USA 96, 4918–4923.

    Article  PubMed  CAS  Google Scholar 

  68. Linge, J. P., O’Donoghue, S. I., and Nilges, M. (2001) Automated assignment of ambiguous NOEs with ARIA. 339, 71–90.

    CAS  Google Scholar 

  69. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R.W., et al. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921.

    Article  PubMed  CAS  Google Scholar 

  70. Herrmann, T., Guntert, P., and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227.

    Article  PubMed  CAS  Google Scholar 

  71. O’Donoghue, S. I., King, G. F., and Nilges, M. (1996) Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: the case of leucine zippers. J. Biomol. NMR 8, 193–206.

    Google Scholar 

  72. Nilges, M. and O’Donoghue, S. I. (1998) Ambiguous NOEs and automated NOE assignment. Prog. Nucl. Magn. Reson. Spectrosc. 32, 107–139.

    Article  CAS  Google Scholar 

  73. Means, G. E. and Feeney, R. E. (1995) Reductive alkylation of proteins. Anal. Biochem. 224, 1–16.

    Article  PubMed  CAS  Google Scholar 

  74. Nielsen, P. R., Nietlispach, D., Mott, H. R., Callaghan, J., Bannister, A., Kouzarides, et al. (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107.

    Article  PubMed  CAS  Google Scholar 

  75. Morreale, A., Venkatesan, M., Mott, H. R., Owen, D., Nietlispach, D., Lowe, P. N., et al. (2000) Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 7, 384–388.

    Article  PubMed  CAS  Google Scholar 

  76. Brasher, S. V., Smith, B. O., Fogh, R. H., Nietlispach, D., Thiru, A., Nielsen, P. R., et al. (2000) The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chrome domain dimer. EMBO J. 19, 1587–1597.

    Article  PubMed  CAS  Google Scholar 

  77. Grzesiek, S. and Bax, A. (1993) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J. Biomol. NMR 3, 185–204.

    PubMed  CAS  Google Scholar 

  78. Hwang, T. L., Kadkhodaei, M., Mohebbi, A., and Shaka, A. J. (1992) Coherent and incoherent magnetization transfer in the rotating frame. Magn. Reson. Chem. 30, S24–S34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nietlispach, D., Mott, H.R., Stott, K.M., Nielsen, P.R., Thiru, A., Laue, E.D. (2004). Structure Determination of Protein Complexes by NMR. In: Downing, A.K. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 278. Humana Press. https://doi.org/10.1385/1-59259-809-9:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-809-9:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-246-9

  • Online ISBN: 978-1-59259-809-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics