NMR Studies of Partially Folded Molten-Globule States

  • Christina Redfield
Part of the Methods in Molecular Biology™ book series (MIMB, volume 278)


Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the study of the structure, dynamics, and folding of proteins in solution. It is particularly powerful when applied to dynamic or flexible systems, such as partially folded molten-globule states of proteins, which are not usually amenable to X-ray crystallography. This chapter describes NMR methods suitable for the characterization of molten-globule states. These include pulsed-field-gradient NMR techniques for the measurement of the hydrodynamic radius, bulk and site-specific hydrogen-deuterium exchange experiments for the identification of regions of secondary structure, and 15N-edited NMR experiments carried out in increasing concentrations of denaturants, which allow the stability of different regions of the molten globule to be probed. Examples of the application of these methods to the study of the low-pH molten globule of human α-lactalbumin are presented.

Key Words

Molten globule partially folded protein protein folding protein denaturation hydrogen-deuterium exchange circular dichroism ANS fluorescence hydrodynamic radius HSQC α-lactalbumin PG-SLED resonance assignment 


  1. 1.
    Arai, M. and Kuwajima, K. (2000) Role of the molten globule state in protein folding. Adv. Protein Chem. 53, 209–282.PubMedCrossRefGoogle Scholar
  2. 2.
    Ptitsyn, O. B. (1995) Molten globule and protein folding. Adv. Protein Chem. 47, 83–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Ohgushi, M. and Wada, A. (1983) Molten-globule state—a compact form of globular proteins with mobile sidechains. FEBS Lett. 164, 21–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Dolgikh, D. A., Abaturov, L. V., Brazhnikov, E. V., Lebedev, I. O., Chirgadze, I. N., and Ptitsyn, O. B. (1983) Acid form of carbonic anhydrase—molten globule with a secondary structure. Dokl. Akad. Nauk., SSSR 272, 1481–1484.Google Scholar
  5. 5.
    Arai, M. and Kuwajima, K. (1996) Rapid formation of a molten globule intermediate in refolding of α-lactalbumin. Fold. Des. 1, 275–287.PubMedCrossRefGoogle Scholar
  6. 6.
    Forge, V., Wijesinha, R. T., Balbach, J., Brew, K., Robinson, C.V., Redfield, C., et al. (1999) Rapid collapse and slow structural reorganisation during the refolding of bovine α-lactalbumin. J. Mol. Biol. 288, 673–688.PubMedCrossRefGoogle Scholar
  7. 7.
    Arai, M., Ito, K., Inobe, T., Nakao, M., Maki, K., Kamagata, K., et al. (2002) Fast compaction of α-lactalbumin during folding studied by stopped-flow X-ray scattering. J. Mol. Biol. 321, 121–132.PubMedCrossRefGoogle Scholar
  8. 8.
    Hughson, F. M., Wright, P. E., and Baldwin, R. L. (1990) Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548.PubMedCrossRefGoogle Scholar
  9. 9.
    Jennings, P. A. and Wright, P. E. (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896.PubMedCrossRefGoogle Scholar
  10. 10.
    Acharya, K. R., Ren, J. S., Stuart, D. I., Phillips, D. C., and Fenna, R. E. (1991) Crystal structure of human α-lactalbumin at 1.7 Å resolution. J. Mol. Biol. 221, 571–581.PubMedCrossRefGoogle Scholar
  11. 11.
    Dolgikh, D. A., Abaturov, L. V., Bolotina, I. A., Brazhnikov, E. V., Bychkova, V. E., Bushuev, V. N., et al. (1985) Compact state of a protein molecule with pronounced small-scale mobility: bovine α-lactalbumin. Eur. Biophys. J. 13, 109–121.PubMedCrossRefGoogle Scholar
  12. 12.
    Redfield, C., Schulman, B. A., Milhollen, M. A., Kim, P. S., and Dobson, C. M. (1999) α-lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat. Struct. Biol. 6, 948–952.PubMedCrossRefGoogle Scholar
  13. 13.
    Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C. (1989) Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Dolgikh, D. A., Gilmanshin, R. I., Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S.Yu., et al. (1981) α-lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 136, 311–315.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu, L. C., Peng, Z.-Y., and Kim, P. S. (1995) Bipartite structure of the α-lactalbumin molten globule. Nat. Struct. Biol. 2, 281–286.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, L. C. and Kim, P. S. (1998) A specific hydrophobic core in the α-lactalbumin molten globule. J. Mol. Biol. 280, 175–182.PubMedCrossRefGoogle Scholar
  17. 17.
    Schulman, B. A., Kim, P. S., Dobson, C. M., and Redfield, C. (1997) A residuespecific NMR view of the non-cooperative unfolding of a molten globule. Nat. Struct. Biol. 4, 630–634.PubMedCrossRefGoogle Scholar
  18. 18.
    Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. J., Uversky, V. N., Gripas, A. F., and Gilmanshin, R. I. (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31, 119–128.PubMedCrossRefGoogle Scholar
  19. 19.
    Berne, B. J. and Pecora, R. (1976) Dynamic Light Scattering with Applications to Chemistry, Biology and Physics. Wiley, New York.Google Scholar
  20. 20.
    Lattman, E. E. (1994) Small-angle X-ray scattering studies of protein-folding. Curr. Opin. Struct. Biol. 4, 87–92.CrossRefGoogle Scholar
  21. 21.
    Stejskal, E. O. and Tanner, J. E. (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292.CrossRefGoogle Scholar
  22. 22.
    Gibbs, S. J. and Johnson, C. S., Jr. (1991) A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J. Magn. Reson. 93, 395–402.Google Scholar
  23. 23.
    Jones, J. A., Wilkins, D. K., Smith, L. J., and Dobson, C. M. (1997) Characterisation of protein unfolding by NMR diffusion measurements. J. Biomol. NMR 10, 199–203.CrossRefGoogle Scholar
  24. 24.
    Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., and Smith, L. J. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38, 16,424–16,431.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, L., Wu, D. H., and Johnson, C. S., Jr. (1995) Determination of the binding isotherm and size of the bovine serum albumin-sodium dodecyl-sulfate complex by diffusion-ordered 2D NMR. J. Phys. Chem. 99, 828–834.CrossRefGoogle Scholar
  26. 26.
    Englander, S. W. and Kallenbach, N. R. (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655.CrossRefGoogle Scholar
  27. 27.
    Woodward, C. K., Simon, I., and Tuchsen, E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135–160.PubMedCrossRefGoogle Scholar
  28. 28.
    Bai, Y., Milne, J. S., Mayne, L., and Englander, S. W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Wijesinha-Bettoni, R., Dobson, C. M., and Redfield, C. (2001) Comparison of the denaturant-induced unfolding of the bovine and human α-lactalbumin molten globules. J. Mol. Biol. 312, 261–273.PubMedCrossRefGoogle Scholar
  30. 30.
    Jeng, M.-F., Englander, S. W., Elove, G. A., Wand, A. J., and Roder, H. (1990) Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10,433–10,437.PubMedCrossRefGoogle Scholar
  31. 31.
    Schulman, B. A., Redfield, C., Peng, Z.-Y., Dobson, C. M., and Kim, P. S. (1995) Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α-lactalbumin. J. Mol. Biol. 253, 651–657.PubMedCrossRefGoogle Scholar
  32. 32.
    Kay, L. E., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10,663–10,665.CrossRefGoogle Scholar
  33. 33.
    Wang, Y. and Shortle, D. (1995) The equilibrium folding pathway of staphylococcal nuclease: indentification of the most stable chain-chain interactions by NMR and CD spectroscopy. Biochemistry 34, 15,895–15,905.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, Y. and Shortle, D. (1996) A dynamic bundle of four adjacent hydrophobic segments in the denatured state of staphylococcal nuclease. Protein Sci. 5, 1898–1906.PubMedCrossRefGoogle Scholar
  35. 35.
    Braun, D., Wider, G., and Wüthrich, K. (1994) Sequence-corrected 15 N “random coil” chemical shifts. J. Am. Chem. Soc. 116, 8466–8469.CrossRefGoogle Scholar
  36. 36.
    Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., et al. (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin 1 β. Biochemistry 28, 6150–6156.PubMedCrossRefGoogle Scholar
  37. 37.
    Fiebig, K. M., Schwalbe, H., Buck, M., Smith, L. J., and Dobson, C. M. (1996) Toward a description of the conformation of denatured states of proteins: comparison of a random coil model with NMR measurements. J. Phys. Chem. 100, 2661–2666.CrossRefGoogle Scholar
  38. 38.
    Frenkiel, T., Bauer, C., Carr, M. D., Birdsall, B., and Feeney, J. (1990) HMQCNOESY-HMQC: a three-dimensional NMR experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J. Magn. Reson. 90, 420–425.Google Scholar
  39. 39.
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.Google Scholar
  40. 40.
    Ramboarina, S. and Redfield, C. (2003) Structural characterisation of the human α-lactalbumin molten globule at high temperature. J. Mol. Biol. 330, 1177–1188.PubMedCrossRefGoogle Scholar
  41. 41.
    Eliezar, D., Jennings, P. A., Dyson, H. J., and Wright, P. E. (1997) Populating the equilibrium molten globule state of apomyoglobin under suitable conditions for structural characterization by NMR. FEBS Lett. 417, 92–96.CrossRefGoogle Scholar
  42. 42.
    Eliezer, D., Yao, J., Dyson, J. H., and Wright, P. E. (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat. Struct. Biol. 5, 148–155.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Christina Redfield
    • 1
  1. 1.Oxford Centre for Molecular SciencesUniversity of OxfordOxfordUK

Personalised recommendations