Perdeuteration/Site-Specific Protonation Approaches for High-Molecular-Weight Proteins

  • Stephen Matthews
Part of the Methods in Molecular Biology™ book series (MIMB, volume 278)

Abstract

Among the factors that limit the application of nuclear magnetic resonance (NMR) to biological macromolecules are increasing resonance overlap and fast transverse relaxation. Multidimensional NMR combined with 13C and 15N labeling has alleviated these problems temporarily; however, they resurface at molecular weight (mol wt) in excess of 30 kDa. Combined perdeuteration/site-specific protonation together with segmental labeling (see  Chapter 4), transverse relaxation-optimized spectroscopy (TROSY) (see  Chapter 5), and residual dipolar couplings (see  Chapter 7) have all helped to dramatically extend the mol wt limit. This article describes some of the practical aspects of the combined perdeuteration/site-specific protonation approach, which has proved so useful in the global fold determination of large proteins.

Key Words

Perdeuteration site-specific protonation large proteins global folds residual dipolar couplings 

References

  1. 1.
    Shan, X., Gardner, K. H., Muhandiram, D. R., Rao, N. S., Arrowsmith, C. H., and Kay, L. E. (1996) Assignment of 15N, 13Cα, 13Cβ and HN resonances in an 15N, 13C, 2H labeled 64 kDa trp repressor-operator complex using triple resonance NMR spectroscopy and 2H-decoupling. J. Am. Chem. Soc. 118, 6570–6579.CrossRefGoogle Scholar
  2. 2.
    Yamazaki, T., Lee, W., Arrowsmith, C. H., Muhandiram, D. R., and Kay, L. (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11,655–11,666.CrossRefGoogle Scholar
  3. 3.
    Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12,366–12,371.PubMedCrossRefGoogle Scholar
  4. 4.
    Riek, R., Pervushin, K., and Wuthrich, K. (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468.PubMedCrossRefGoogle Scholar
  5. 5.
    Riek, R., Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) Solution NMR techniques for large molecular and supramolecular structures. J. Am. Chem. Soc. 124, 12,144–12,153.PubMedCrossRefGoogle Scholar
  6. 6.
    Fiaux, J., Bertelsen, E. B., Horwich, A. L., and Wuthrich, K. (2002) NMR analysis of a 900K GroEL-GroES complex. Nature 418, 207–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wuthrich, K. (2000) NMR assignment and secondary structure determination of an octameric 110 kDa protein using TROSY in triple resonance experiments. J. Am. Chem. Soc. 122, 7543–7548.CrossRefGoogle Scholar
  8. 8.
    Tugarinov, V., Muhandiram, R., Ayed, A., and Kay, L. E. (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J. Am. Chem. Soc. 124, 10,025–10,035.PubMedCrossRefGoogle Scholar
  9. 9.
    Mal, T. K., Matthews, S. J., Kovacs, H., Campbell, I. D., and Boyd, J. (1998) Some NMR experiments and a structure determination employing a {N-15,H-2} enriched protein. J. Biomol. NMR 12, 259–276.PubMedCrossRefGoogle Scholar
  10. 10.
    Gardner, K. H., Rosen, M. K., and Kay, L. E. (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36, 1389–1401.PubMedCrossRefGoogle Scholar
  11. 11.
    Metzler, W. J., Wittekind, M., Goldfarb, V., Mueller, L., and Farmer, B. T. (1996) Incorporation of 1H/13C/15N-(Ile, Leu, Val) into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J. Am. Chem. Soc. 118, 6800, 6801.CrossRefGoogle Scholar
  12. 12.
    Smith, B. O., Ito, Y., Raine, A., Teichmann, S., Ben-Tovim, L., Nietlispach, D., et al. (1996) An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residues. J. Biomol. NMR 8, 360–368.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T., and Kay, L. E. (1996) Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627–636.PubMedCrossRefGoogle Scholar
  14. 14.
    Gardner, K. H. and Kay, L. E. (1997) Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599, 7600.CrossRefGoogle Scholar
  15. 15.
    Zwahlen, C., Vincent, S. J. F., Gardner, K. H., and Kay, L. E. (1998) Significantly improved resolution for NOE correlations from valine and isoleucine (C-gamma 2) methyl groups in N-15,C-13-and N-15,C-13,H-2-labeled proteins. J. Am. Chem. Soc. 120, 4825–4831.CrossRefGoogle Scholar
  16. 16.
    Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C., and Kay, L. E. (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated N-15-, C-13-, H-2-labeled proteins. J. Biomol. NMR 13, 369–374.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, H., Janowick, D. A., Schkeryantz, J. M., Liu, X., and Fesik, S. W. (1999) A method for assigning phenylalanines in proteins. J. Am. Chem. Soc. 121, 1611, 1612.CrossRefGoogle Scholar
  18. 18.
    Johnson, B. A. and Blevins, R. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.CrossRefGoogle Scholar
  19. 19.
    Stein, E., G., Rice, L. M., and Brünger, A. T. (1997) Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. B 124, 154–164.CrossRefGoogle Scholar
  20. 20.
    Nilges, M., Gronenborn, A. M., and Clore, G. M. (1988) Determination of 3-dimensional structures of proteins by simulated annealing with interproton distance restraints—application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor-2. Protein Eng. 2, 27–38.PubMedCrossRefGoogle Scholar
  21. 21.
    Brünger, A. T. (1992) XPLOR Manual Ver. 3.1. Yale University, New Haven, CT.Google Scholar
  22. 22.
    Brünger, A. T., Adams, P. D., Clore, G. M., DeLanod, W. L., Grose, P., Grosse-Kunstleve, R. W., et al. (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D Biol. Crystallogr. D54, 905–921.CrossRefGoogle Scholar
  23. 23.
    Kelly, G., Prasannan, S., Daniell, S., Frankel, G., Dougan, G., Connerton, I., et al. (1998) Sequential assignment of the triple labeled 30.1 kDa cell-adhesion domain of intimin from enteropathogenic E-coli. J. Biomol. NMR 12, 189–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelly, G., Prasannan, S., Daniell, S., Fleming, K., Frankel, G., Dougan, G., et al. (1999) Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat. Struct. Biol. 6, 313–318.PubMedCrossRefGoogle Scholar
  25. 25.
    Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR 6, 277–293.PubMedCrossRefGoogle Scholar
  26. 26.
    Norwood, T. J., Boyd, J., Heritage, J. E., Soffe, N., and Campbell, I. D. (1990) Comparison of techniques for 1H-detected heteronuclear 1H-15N spectroscopy. J. Magn. Reson. B 87, 488–501.Google Scholar
  27. 27.
    Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A., et al. (1989) Overcoming the overlap problem in the assignment of larger proteins by the use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser multiple quantum coherence spectroscopy: application to interleukin 1. Biochemistry 28, 6150–6156.PubMedCrossRefGoogle Scholar
  28. 28.
    Vuister, G. W., Clore, G. M., Gronenborn, A. M., Powers, R., Garrett, D. S., Tschudin, R., et al. (1993) Increased resolution and improved spectral quality in 4-dimensional 13C/13C-separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J. Magn. Reson. B 101, 210–213.CrossRefGoogle Scholar
  29. 29.
    Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.PubMedCrossRefGoogle Scholar
  30. 30.
    Goto, N. K. and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.PubMedCrossRefGoogle Scholar
  31. 31.
    Mulder, F. A. A., Ayed, A., Yang, D. W., Arrowsmith, C. H., and Kay, L. E. (2000) Assignment of H-1(N), N-15, C-13(alpha), (CO)-C-13 and C-13(beta) resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy. J. Biomol. NMR 18, 173–176.PubMedCrossRefGoogle Scholar
  32. 32.
    Medek, A., Olejniczak, E. T., Meadows, R. P., and Fesik, S. W. (2000) An approach for high-throughput structure determination of proteins by NMR spectroscopy. J. Biomol. NMR 18, 229–238.PubMedCrossRefGoogle Scholar
  33. 33.
    Aghazadeh, B., Zhu, K., Kubiseski, T. J., Liu, G. A., Pawson, T. P., Zheng, Y., et al. (1998) Structure and mutagenesis of the Dbl homology domain. Nat. Struct. Biol. 5, 1098–1107.PubMedCrossRefGoogle Scholar
  34. 34.
    Arora, A., Abildgaard, F., Bushweller, J. H., and Tamm, L. K. (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8, 334–338.PubMedCrossRefGoogle Scholar
  35. 35.
    Venter, R. A., Farmer, B. T., Fierke, C. A., and Spicer, L. D. (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: C-13, N-15 and H-1 assignments of human carbonic anhydrase II. J. Mol. Biol. 264, 1101–1116.CrossRefGoogle Scholar
  36. 36.
    Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J. Biomol. NMR 4, 171–180.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Stephen Matthews
    • 1
  1. 1.Department of Biological Sciences, Imperial College of ScienceTechnology and MedicineLondonUK

Personalised recommendations