Skip to main content

Generation, Maintenance, and Adoptive Transfer of Diabetogenic T-Cell Lines/Clones From the Nonobese Diabetic Mouse

  • Protocol
Autoimmunity

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 102))

Summary

The ability to generate, maintain, and use cloned lines of T cells reactive for self-antigens has opened up a new avenue of investigation for researchers. These T-cell clones allow the rapid induction of tissue-specific autoimmunity with the intent of dissecting the contribution of the different cell types involved. T cells from the diabetes-prone nonobese diabetic mouse are proving to be a vital asset for understanding the T-cell-mediated pathogenesis that leads to overt β-cell destruction. T-cell clone adoptive transfer protocols have been developed for use in immunodeficient strains, thus reducing the complexity of mechanism of disease initiation. Furthermore, these T-cell clones have been used to derive T-cell receptor transgenic (TCR-Tg) animals carrying only self-reactive T cells. The use of these TCR-Tg animals to study pathogenesis has also evolved from the ability to generate, maintain, and use T-cell cloned lines. This chapter focuses on primary culture for the generation of T-cell lines and clones, their long-term maintenance, and their use in disease transfer for studying the pathogenesis of end-organ autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greiner, D. L., Rossini, A. A., and Mordes, J. P. (2001) Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. Clin. Immunol. 100, 134–143.

    Article  PubMed  CAS  Google Scholar 

  2. Eisenbarth, G. S. (1993) Molecular aspects of the etiology of type I diabetes mellitus. J Diabetes Complications 7, 142–50.

    Article  PubMed  CAS  Google Scholar 

  3. Bach, J. F. (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrinology Rev. 4, 516–542.

    Google Scholar 

  4. Christianson, S. W., Shultz, L. D., and Leiter, E. H. (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic vs prediabetic NOD.NON-Thy-1a donors. Diabetes 42, 44–55.

    Article  PubMed  CAS  Google Scholar 

  5. Haskins, K., Portas, M., Bradley, B., Wegmann, D., and Lafferty, K. (1988) Tlymphocyte clone specific for pancreatic islet antigen. Diabetes 37, 1444–1448.

    Article  PubMed  CAS  Google Scholar 

  6. Haskins, K., Portas, M., Bergman, B., Lafferty, K., and Bradley, B. (1989) Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 86, 8000–8004.

    Article  PubMed  CAS  Google Scholar 

  7. Haskins, K. and McDuffie, M. (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249, 1433–1436.

    Article  PubMed  CAS  Google Scholar 

  8. Miller, B. J., Appel, M. C., O’Neil, J. J., and Wicker, L. S. (1988) Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J. Immunol. 140, 52–58.

    PubMed  CAS  Google Scholar 

  9. O’Reilly, L. A., Hutchings, P. R., Crocker, P. R., Simpson, E., Lund, T., Kioussis, D., et al. (1991) Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur. J. Immunol. 21, 1171–1180.

    Article  PubMed  Google Scholar 

  10. DiLorenzo, T. P., Graser, R. T., Ono, T., Christianson, G. J., Chapman, H. D., Roopenian, D. C., et al. (1998) Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc. Natl. Acad. Sci. USA 95, 12,538–12,543.

    Article  PubMed  CAS  Google Scholar 

  11. Serreze, D. V., Chapman, H. D., Varnum, D. S., Gerling, I., Leiter, E. H., and Shultz, L. D. (1997) Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J. Immunol. 158, 3978–3986.

    PubMed  CAS  Google Scholar 

  12. Graser, R. T., DiLorenzo, T. P., Wang, F., Christianson, G. J., Chapman, H. D., Roopenian, D. C., et al. (2000) Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions. J. Immunol. 164, 3913–3918.

    PubMed  CAS  Google Scholar 

  13. Katz, J. D., Wang, B., Haskins, K., Benoist, C., and Mathis, D. (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100.

    Article  PubMed  CAS  Google Scholar 

  14. Poulin, M. and Haskins, K. (2000) Induction of diabetes in nonobese diabetic mice by Th2 T cell clones from a TCR transgenic mouse. J. Immunol. 164, 3072–3078.

    PubMed  CAS  Google Scholar 

  15. Peterson, J. D., Pike, B., McDuffie, M., and Haskins, K. (1994) Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice. J. Immunol. 153, 2800–2806.

    PubMed  CAS  Google Scholar 

  16. Peterson, J. D., Berg, R., Piganelli, J. D., Poulin, M., and Haskins, K. (1998) Analysis of leukocytes recruited to the pancreas by diabetogenic T cell clones. Cell Immunol. 189, 92–98.

    Article  PubMed  CAS  Google Scholar 

  17. Dobbs, C. M. and Haskins, K. (2001) Comparison of a T cell clone and of T cells from a TCR transgenic mouse: TCR transgenic T cells specific for self-antigen are atypical. J. Immunol. 166, 2495–2504.

    PubMed  CAS  Google Scholar 

  18. Piganelli, J. D., Flores, S. C., Cruz, C., Koepp, J., Batinic-Haberle, I., Crapo, J., et al. (2002) A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 51, 347–355.

    Article  PubMed  CAS  Google Scholar 

  19. Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J. (1980) Macrophage-mediated suppression. I. Evidence for participation of both hydrogen peroxide and prostaglandins in suppression of murine lymphocyte proliferation. J. Immunol. 124, 983–988.

    PubMed  CAS  Google Scholar 

  20. Ablamunits, V., Elias, D., and Cohen, I. R. (1999). The pathogenicity of islet-infiltrating lymphocytes in the non-obese diabetic (NOD) mouse. Clin. Exp. Immunol. 115, 260–267.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Milton, M.J., Poulin, M., Mathews, C., Piganelli, J.D. (2004). Generation, Maintenance, and Adoptive Transfer of Diabetogenic T-Cell Lines/Clones From the Nonobese Diabetic Mouse. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Medicine™, vol 102. Humana Press. https://doi.org/10.1385/1-59259-805-6:213

Download citation

  • DOI: https://doi.org/10.1385/1-59259-805-6:213

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-231-5

  • Online ISBN: 978-1-59259-805-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics