Skip to main content

Triplet Repeats and DNA Repair

Germ Cell and Somatic Cell Instability in Transgenic Mice

  • Protocol
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 277))

Summary

This chapter describes methods for the isolation of specific cell types that reveal how and where expansion can occur. For the hereditary component of expansion, the male germ cell has proved useful in distinguishing processes that can contribute to expansion, as described in our article (Nature Genetics 27, 407, 2001). Mature spermatazoa (SZs) can be isolated directly from the epididymis. Haploid spermatids (STs), diploid spermatagonia (SGs), and tetraploid spermatocytes (SCs) can be removed from the testis and sorted by fluorescence-activity cell sorting (FACS); differences in DNA content and morphology allow resolution by fluorescence and light scattering. Repeat-length measurement can pinpoint the stage at which expansion occurs. Because the timing of meiosis and mitosis with respect to sperm development is known, the analysis can distinguish repair and replication processes. Furthermore, the possible contribution of Y- or X-specific factors can be evaluated by sorting X- and Y-bearing germ cells. To enable analysis of female germ cells, we describe methods for oocyte preparations and a method for the isolation of the eight-cell-stage embryo. Therefore, the methods described here can help to answer such questions as the timing during development of expansion, whether expansion is limited to a single period, whether both replication and repair contribute to instability, and the role of somatic instability in disease. If further expansion of the inherited allele contributes to the phenotype, then intervention in somatic tissue might be therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMurray, C. T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl. Acad. Sci. USA 96, 1823–1825.

    Article  PubMed  CAS  Google Scholar 

  2. Bates, G., Harper, P. S. and Jones, L. (2002) Huntington’s Disease, 3rd ed. Oxford University Press, Oxford.

    Google Scholar 

  3. Goldberg, Y. P., McMurray, C. T., Zeisler, J., et al. (1995) Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population. Hum. Mol. Genet. 4, 1911–1918.

    Article  PubMed  CAS  Google Scholar 

  4. Goellner, G. M., Tester, D., Thibodeau, S., et al. (1997) Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am. J. Hum. Genet. 60, 879–890.

    PubMed  CAS  Google Scholar 

  5. Spiro, C., Pelletier, R., Rolfsmeier, M. L., et al. (1999) Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085.

    Article  PubMed  CAS  Google Scholar 

  6. Henricksen, L. A., Tom, S., Liu, Y., et al. (2000) Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 275, 16,420–16,427.

    Article  PubMed  CAS  Google Scholar 

  7. Lieber, M. R. (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233–240.

    Article  PubMed  CAS  Google Scholar 

  8. Tishkoff, D. X., Filosi, N., Gaida, G. M., et al. (1997) A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253–263.

    Article  PubMed  CAS  Google Scholar 

  9. Manley, K., Shirley, T. L., Flaherty, L., et al. (1999) Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473.

    Article  PubMed  CAS  Google Scholar 

  10. Kovtun, I. V. and McMurray, C. T. (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411.

    Article  PubMed  CAS  Google Scholar 

  11. van den Broek, W. J., Nelen, M. R., Wansink, D. G., et al. (2002) Somatic expansion behavior of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198.

    Article  PubMed  Google Scholar 

  12. Johnson, R. E., Kovvali, G. K., Prakash, L., et al. (1995) Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269, 238–240.

    Article  PubMed  CAS  Google Scholar 

  13. Kokoska, R. J., Stefanovic, L., Tran, H. T., et al. (1998) Destabilization of yeast microand minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol. Cell. Biol. 18, 2779–2788.

    PubMed  CAS  Google Scholar 

  14. Schweitzer, J. K. and Livingston, D. M. (1998) Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet 7, 69–74.

    Article  PubMed  CAS  Google Scholar 

  15. Richard, G.-F., Goellner, G. M., McMurray, C. T., et al. (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex. EMBO J. 19, 2381–2390.

    Article  PubMed  CAS  Google Scholar 

  16. Miret, J. J., Pessoa-Brandao L., and Lahue R. S. (1998) Orientation-dependent and sequence specific expansion of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12,438–12,443.

    Article  PubMed  CAS  Google Scholar 

  17. Moore, H., Greewell, P. W., Liu, C.-P., et al. (1999) Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509.

    Article  PubMed  CAS  Google Scholar 

  18. Pearson, C. E., Ewel, A., Acharya, S., et al. (1997) Human MSH2 binds to trinucleotide repeat DNA structure associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  19. Samadashwily, G. M., Raca, G., and Mirkin, S. M. (1997) Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304.

    Article  PubMed  CAS  Google Scholar 

  20. Freudenreich, C. H., Kantrow, S. M., and Zakian, V. A. (1998) Expansion and lengthdependent fragility of CTG repeats in yeast. Science 279, 853–856.

    Article  PubMed  CAS  Google Scholar 

  21. Lyons-Darden, T. and Topal, M. D. (1999) Abasic sites induce triplet-repeat expansion during DNA replication in vitro. J. Biol. Chem. 274, 25,975–25,978.

    Article  PubMed  CAS  Google Scholar 

  22. Mangiarini, L., Sathasivam, K., Seller, M., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  23. Kovtun, I. V., Therneau, T. M., and McMurray, C. T. (2000) Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington’s disease gene. Hum. Mol. Genet. 9, 2767–2775.

    Article  PubMed  CAS  Google Scholar 

  24. Kennedy, L. and Shelbourne, P. F. (2000) Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum. Mol. Genet. 9, 2539–2544.

    Article  PubMed  CAS  Google Scholar 

  25. Savouret, C., Brisson, E., Essers, J., et al. (2003) CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273.

    Article  PubMed  CAS  Google Scholar 

  26. Johnson, L. A. and Pinkel, D. (1986) Modification of a laser-based flow cytometer for high resolution DNA analysis of mammalian spermatozoa. Cytometry 7, 268–273.

    Article  PubMed  CAS  Google Scholar 

  27. Rens, W., Welch, G. R., and Johnson, L. A. (1998) A novel nozzle for more efficient sperm orientation to improve sorting efficiency of X-and Y-chromosome-bearing sperm. Cytometry 33, 476–481.

    Article  PubMed  CAS  Google Scholar 

  28. Rens, W., Welch, G. R., and Johnson, L. A. (1999) Improved flow cytometric sorting of X-and Y-chromosome bearing sperm: substantial increase in yield of sexed sperm. Mol. Reprod. Dev. 52, 50–56.

    Article  CAS  Google Scholar 

  29. Kovtun, I. V., Welch, G., Guthrie, H. D., et al. (2004) CAG repeat lengths in X-and Y-bearing sperm indicate that gender bias during transmission of the Huntington’s disease gene is determined in the embryo. J. Biol. Chem. 279, 9389–9391.

    Article  PubMed  CAS  Google Scholar 

  30. Hogan, B., Beddington, R., Constantini, F., et al. (1994) Manipulating the Mouse Embryo, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  31. Sermon, K., Goossens, V., Seneca, S., et al. (1998). Preimplantation diagnosis for Huntington’s disease (HD): clinical application and analysis of the HD expansion in affected embryos. Prenat. Diagn. 18, 1427–1436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Kovtun, I.V., Spiro, C., McMurray, C.T. (2004). Triplet Repeats and DNA Repair. In: Kohwi, Y. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology™, vol 277. Humana Press. https://doi.org/10.1385/1-59259-804-8:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-804-8:309

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-243-8

  • Online ISBN: 978-1-59259-804-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics