Skip to main content

Using Antibodies to Analyze Polyglutamine Stretches

  • Protocol
Trinucleotide Repeat Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 277))

Summary

Expansion of a homomeric stretch of glutamine residues beyond a critical threshold can produce neurodegenerative disease. This observation led to the idea that abnormal polyglutamine stretches can alter protein structure in ways that contribute to disease. Because they are prone to aggregation, proteins with abnormal polyglutamine expansions have been difficult to study with conventional biophysical approaches. Some of these proteins are also very large, complicating efforts to generate them in vitro or to purify them for biochemical studies. An alternative approach has been to use antibodies with known binding specificity as probes of protein folding and protein structure. Antibodies can often bind to specific protein epitopes in situ and are, therefore, one of the few tools that can be used to probe protein structure in a physiological context and in the presence of that protein’s normal binding partners. However, antibodies are complex reagents, and an understanding of their binding properties, methods of use, and limitations is needed to interpret results properly. We have developed monoclonal antibodies that specifically recognize expanded polyglutamine stretches in mutant huntingtin. Here, we describe several methods for using one of these antibodies to explore the structure of abnormal polyglutamine expansions and the proteins that contain them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gusella, J. F. and MacDonald, M. E. (1996) Trinucleotide instability: a repeating theme in human inherited disorders. Annu. Rev. Med. 47, 201–209.

    Article  PubMed  CAS  Google Scholar 

  2. Zoghbi, H. Y. and Orr, H. T. (2000) Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247.

    Article  PubMed  CAS  Google Scholar 

  3. Gusella, J. F. and MacDonald, M. E. (1995) Huntington’s disease: CAG genetics expands neurobiology. Curr. Opin. Neurobiol. 5, 656–662.

    Article  PubMed  CAS  Google Scholar 

  4. Paulson, H. L. and Fishbeck, K. H. (1996) Trinucleotide repeats in neurogenetics disorders. Annu. Rev. Neurosci. 19, 79–107.

    Article  PubMed  CAS  Google Scholar 

  5. Andrew, S. E., Goldberg, Y. P., and Hayden, M. R. (1997) Rethinking genotype and phenotype correlations in polyglutamine expansion disorders. Hum. Mol. Genet. 6, 2005–2010.

    Article  PubMed  CAS  Google Scholar 

  6. Zeron, M. M., Hansson, O., Chen, N., et al. (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33, 849–860.

    Article  PubMed  CAS  Google Scholar 

  7. Ambrose, C., Duyao, M. P., Barnes, G., et al. (1994) Structure and expression of the Huntington’s disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat. Cell Mol. Genet. 20, 27–38.

    Article  PubMed  CAS  Google Scholar 

  8. Dragatsis, I., Levine, M. S., and Zeitlin, S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genet. 26, 300–306.

    Article  PubMed  CAS  Google Scholar 

  9. Chamberlain, N. L., Driver, E. D., and Miesfeld, R. L. (1994) The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22, 3181–3186.

    Article  PubMed  CAS  Google Scholar 

  10. Mhatre, A. N., Trifiro, M. A., Kaufman, M., et al. (1993) Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nature 5, 184–187.

    CAS  Google Scholar 

  11. Rigamonti, D., Bauer, H. J., De-Fraja, C., et al. (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713.

    PubMed  CAS  Google Scholar 

  12. Leavitt, B. R., Guttman, J. A., Hodgson, J. G., et al. (2001) Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324.

    Article  PubMed  CAS  Google Scholar 

  13. Zuccato, C., Ciammola, A., Rigamonti, D., et al. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498.

    Article  PubMed  CAS  Google Scholar 

  14. Scherzinger, E., Lurz, R., Turmaine, M., et al. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  PubMed  CAS  Google Scholar 

  15. Georalis, Y., Starikov, E. B., Hollenbach, B., et al. (1998) Huntingtin aggregation monitored by dynamic light scattering. Proc. Natl. Acad. Sci. USA 95, 6118–6121.

    Article  Google Scholar 

  16. Martindale, D., Hackam, A., Wieczorek, A., et al. (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genet. 18, 150–154.

    Article  PubMed  CAS  Google Scholar 

  17. Rajan, R. S., Illing, M. E., Bence, N. F., et al. (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA 98, 13,060–13,065.

    Article  PubMed  CAS  Google Scholar 

  18. Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., et al. (2001) Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  19. Preisinger, E., Jordan, B. M., Kazantsev, A., et al. (1999) Evidence for a recruitment and sequestration mechanism in Huntington’s disease. Phil. Trans. R. Soc. (Lond.) B: Biol. Sci. 354, 1029–1034.

    Article  CAS  Google Scholar 

  20. Kazantsev, A., Preisinger, E., Dranovsky, A., et al. (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11,404–11,409.

    Article  PubMed  CAS  Google Scholar 

  21. Stott, K., Blackburn, J. M., Butler, P. J. G., et al. (1995) Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative disease. Proc. Natl. Acad. Sci. USA 92, 6509–6513.

    Article  PubMed  CAS  Google Scholar 

  22. Perutz, M. F. (1995) Glutamine repeats as polar zippers: their role in inherited neurogenerative disease. Mol. Med. 1, 718–721.

    PubMed  CAS  Google Scholar 

  23. DiFiglia, M., Sapp, E., Chase, K. O., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  24. Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  25. Ross, C. A. (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases. Neuron 19, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  26. Becher, M. W., Kotzuk, J. A., Sharp, A. H., et al. (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy—correlation between the density of inclusions and IT-15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397.

    Article  PubMed  CAS  Google Scholar 

  27. Davies, S. W., Beardsall, K., Turmaine, M., et al. (1998) Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet 351, 131–133.

    Article  PubMed  CAS  Google Scholar 

  28. Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1999) From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington’s disease. Phil. Trans. R. Soc. (Lond.) B: Biol. Sci. 354, 971–979.

    Article  Google Scholar 

  29. Perutz, M. F. and Windle, A. H. (2001) Cause of neural death in neurodegenerative disease attributable to expansion of glutamine repeats. Nature 412, 143–144.

    Article  PubMed  CAS  Google Scholar 

  30. Li, H., Li, S. H., Yu, Z. X., et al. (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J. Neurosci. 21, 8473–8481.

    PubMed  CAS  Google Scholar 

  31. Chen, S., Berthelier, V., Yang, W., et al. (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182.

    Article  PubMed  CAS  Google Scholar 

  32. Stenoinen, D. L., Cummings, C. J., Adams, H. P., et al. (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 8, 731–741.

    Article  Google Scholar 

  33. Suh, S., Senut, M., Whitelegge, J., et al. (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell Biol. 153, 283–294.

    Article  Google Scholar 

  34. La Spada, A. R., Fu, Y.-H., Sopher, B. L., et al. (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in amouse model of SCA7. Neuron 31, 913–927.

    Article  PubMed  Google Scholar 

  35. Kouroku, Y., Fujita, E., Jimbo, A., et al. (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet. 11, 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  36. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  37. Hodgson, J. G., Agopyan, N., Gutekunst, C. A., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  38. Heintz, N. and Zoghbi, H. Y. (2000) Insights from mouse models into the molecular basis of neurodegeneration. Annu. Rev. Physiol. 62, 779–802.

    Article  PubMed  CAS  Google Scholar 

  39. Huynh, D. P., Figueroa, K., Hoang, N., et al. (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nature Genet. 26, 44–50.

    Article  PubMed  CAS  Google Scholar 

  40. Kuemmerle, S., Gutekunst, C. A., Klein, A. M., et al. (1999) Huntingtin aggregates may not predict neuronal death in Huntington’s disease. Ann. Neurol. 46, 842–849.

    Article  PubMed  CAS  Google Scholar 

  41. Saudou, F., Finkbeiner, S., Devys, D., et al. (1998) Huntingtin acts in the nucleus to induce apoptosis, but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  42. Kim, M., Lee, H.-S., LaForet, G., et al. (1999) Mutant huntingtin expression in clonal stratial cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964–973.

    PubMed  CAS  Google Scholar 

  43. Cummings, C. J., Reinstein, E., Sun, Y., et al. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892.

    Article  PubMed  CAS  Google Scholar 

  44. Yu, Z.-X., Li, S.-H., Nguyen, H.-P., et al. (2002) Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice. Hum. Mol. Genet. 11, 905–914.

    Article  PubMed  CAS  Google Scholar 

  45. Sisodia, S. S. (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental or beneficial? Cell 95, 1–4.

    Article  PubMed  CAS  Google Scholar 

  46. Rich, T., Assier, E., Skepper, J., et al. (1999) Disassembly of nuclear inclusions in the dividing cell—a novel insight into neurodegeneration. Hum. Mol. Genet. 8, 2451–2459.

    Article  PubMed  CAS  Google Scholar 

  47. Floyd, J. A. and Hamilton, B. A. (1999) Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring? Neuron 24, 765–766.

    Article  PubMed  CAS  Google Scholar 

  48. Scherzinger, E., Sittler, A., Schweiger, K., et al. (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609.

    Article  PubMed  CAS  Google Scholar 

  49. Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002) Naturally secreted oligomers of amyloid b protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    Article  PubMed  CAS  Google Scholar 

  50. Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta 1–42 are potent central nervous system toxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  51. Conway, K. A., Lee, S.-J., Rochet, J.-C., et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both a-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  52. DePace, A. H., Santoso, A., Hillner, P., et al. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of yeast prion. Cell 93, 1241–1252.

    Article  PubMed  CAS  Google Scholar 

  53. Osherovich, L. Z. and Weissman, J. S. (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI +] prion. Cell 106, 183–194.

    Article  PubMed  CAS  Google Scholar 

  54. Lindquist, S., Krobitsch, S., Li, L., et al. (2001) Investigating protein conformation-based inheritance and disease in yeast. Phil. Trans. R. Soc. (Lond.) B: Biol. Sci. 356, 169–176.

    Article  CAS  Google Scholar 

  55. Scheibel, T. and Lindquist, S. L. (2001) The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nature Struct. Biol. 8, 958–962.

    Article  PubMed  CAS  Google Scholar 

  56. Serio, T. R., Cashikar, A. G., Kowal, A. S., et al. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  57. Altschuler, E. L., Hud, N. V., Mazrimas, J. A., et al. (1997) Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J. Pept. Res. 50, 73–75.

    Article  PubMed  CAS  Google Scholar 

  58. Minor, D. L., Jr. and Kim, P. S. (1994) Context is a major determinant of b-sheet propensity. Nature 371, 264–267.

    Article  PubMed  CAS  Google Scholar 

  59. Minor, D. L., Jr. and Kim, P. S. (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734.

    Article  PubMed  CAS  Google Scholar 

  60. Lathrop, R. H., Casale, M., Tobias, D. J., et al. (1998) Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington’s Disease. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 105–114.

    PubMed  CAS  Google Scholar 

  61. Peretz, D., Williamson, R. A., Legname, G., et al. (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34, 921–932.

    Article  PubMed  CAS  Google Scholar 

  62. Peretz, D., Williamson, R. A., Kaneko, K., et al. (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743.

    Article  PubMed  CAS  Google Scholar 

  63. Li, L. and Lindquist, S. (2000) Creating a protein-based element of inheritance. Science 287, 661–664.

    Article  PubMed  CAS  Google Scholar 

  64. Laver, W. G., Air, G. M., Webster, R. G., et al. (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61, 553–556.

    Article  PubMed  CAS  Google Scholar 

  65. Sachs, D. H., Schechter, A. N., Eastlake, A., et al. (1972) An immunologic approach to the conformational equilibria of polypeptides. Proc. Natl. Acad. Sci. USA 69, 3790–3794.

    Article  PubMed  CAS  Google Scholar 

  66. Sela, M. (1969) Antigenicity: some molecular aspects. Science 166, 1365–1374.

    Article  PubMed  CAS  Google Scholar 

  67. Chen, G., Dubrawsky, I., Mendez, P., et al. (1999) In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site. Protein Eng. 12, 349–356.

    Article  PubMed  CAS  Google Scholar 

  68. Chothia, C. and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917.

    Article  PubMed  CAS  Google Scholar 

  69. Chothia, C., Lesk, A. M., Tramontano, A., et al. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  70. Zou, W., Mackenzie, R., Therien, L., et al. (1999) Conformational epitope of the type III group B Streptococcus capsular polysaccharide. J. Immunol. 163, 820–825.

    PubMed  CAS  Google Scholar 

  71. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., et al. (1977) The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  72. Graille, M., Stura, E. A., Corper, A. L., et al. (2000) Crystal structure of a Staphylococcus aureus protein. A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl. Acad. Sci. USA 97, 5399–5404.

    Article  PubMed  CAS  Google Scholar 

  73. Kistler, J., Aebi, U., Onorato, L., et al. (1978) Structural changes during the transformation of bacteriophage T4 polyheads: characterization of the initial and final states by freeze-drying and shadowing Fab-fragment-labelled preparations. J. Mol. Biol. 126, 571–589.

    Article  PubMed  CAS  Google Scholar 

  74. Fairclough, R. H., Twaddle, G. M., Gudipati, E., et al. (1998) Mapping the mAb 383C epitope to a2 (187–199) of the Torpedo acetylcholine receptor on the three-dimensional model. J. Mol. Biol. 282, 301–315.

    Article  PubMed  CAS  Google Scholar 

  75. Sun, W., Barchi, R. L., and Cohen, S. A. (1995) Probing sodium channel cytoplasmic domain structure. Evidence for the interaction of the rSkM1 amino and carboxyl termini. J. Biol. Chem. 270, 22,271–22,276.

    Article  PubMed  CAS  Google Scholar 

  76. Tzartos, S. J., Barkas, T., Cung, M. T., et al. (1998) Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol. Rev. 163, 89–120.

    Article  PubMed  CAS  Google Scholar 

  77. Harlow, E. and Lane, D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  78. Berzofsky, J. A., Berkower, I. J., and Epstein, S. L. (1999) Antigen antibody interactions and monoclonal antibodies, Fundamental Immunology, 4th ed. (W. E. Paul, ed.), Lippincott-Raven, Philadelphia, pp. 75–110.

    Google Scholar 

  79. Ways, J. P. and Parham, P. (1983) The binding of monoclonal antibodies to cell-surface molecules. A quantitative analysis with immunoglobulin G against two alloantigenic determinants of the human transplantation antigen HLA-A2. Biochem. J. 216, 423–432.

    PubMed  CAS  Google Scholar 

  80. Parham, P. (1984) The binding of monoclonal antibodies to cell surface molecules. Quantitative analysis of the reactions and cross-reactions of an antibody (MB40.3) with four HLA-B molecules. J. Biol. Chem. 259, 13,077–13,083.

    PubMed  CAS  Google Scholar 

  81. MacKenzie, R. and To, R. (1998) The role of valency in the selection of anti-carbohydrate single-chain Fvs from phage display libraries. J. Immunol. Methods 220, 39–49.

    Article  PubMed  CAS  Google Scholar 

  82. Stevanin, G., Trottier, Y., Cancel, G., et al. (1996) Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Hum. Mol. Genet. 5, 1887–1892.

    Article  PubMed  CAS  Google Scholar 

  83. DeLano, W. L., Ultsch, M. H., de Vos, A. M., et al. (2000) Convergent solutions to binding at as protein-protein interface. Science 287, 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  84. Lescar, J., Stouracova, R., Riottot, M.-M., et al. (1997) Three-dimensional structure of an Fab-peptide complex: structural basis of HIV-1 protease inhibition by amonoclonal antibody. J. Mol. Biol. 267, 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  85. Persichetti, F., Trettel, F., Huang, C. C., et al. (1999) Mutant huntingtin forms in vivo complexes with distinct context-dependent conformations of the polyglutamine segment. Neurobiol. Dis. 6, 364–375.

    Article  PubMed  CAS  Google Scholar 

  86. Ko, J., Ou, S., and Patterson, P. H. (2001) New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res. Bull. 56, 319–329.

    Article  PubMed  CAS  Google Scholar 

  87. Mende-Mueller, L. M., Toneff, T., Hwang, S. R., et al. (2001) Tissue-specific proteolysis of huntingtin (htt) in human brain: evidence of enhanced levels of N-and C-terminal htt fragments in Huntinton’s disease striatum. J. Neurosci. 21, 1830–1837.

    PubMed  CAS  Google Scholar 

  88. Kim, Y. J., Yi, Y., Sapp, E., et al. (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl. Acad. Sci. USA 98, 12,784–12,789.

    Article  PubMed  CAS  Google Scholar 

  89. Humbert, S., Bryson, E. A., Cordelières, F. P., et al. (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev. Cell. 3, 1–20.

    Article  Google Scholar 

  90. Das, T. K., Mazumdar, S., and Mitra, S. (1998) Characterization of a partially unfolded structure of cytochrome C induced by sodium dodecyl sulphate and the kinetics of its refolding. Eur. J. Biochem. 254, 662–670.

    Article  PubMed  CAS  Google Scholar 

  91. Mitraki, A., Barge, A., Chroboczek, J., et al. (1999) Unfolding studies of human adenovirus type 2 fibre trimers. Eur. J. Biochem. 264, 599–606.

    Article  PubMed  CAS  Google Scholar 

  92. Dunn, S. D. (1986) Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal. Biochem. 157, 144–153.

    Article  PubMed  CAS  Google Scholar 

  93. Hubbard, M. J. and Klee, C. B. (1987) Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immoblized on nitrocellulose. J. Biol. Chem. 262, 15,062–15,070.

    PubMed  CAS  Google Scholar 

  94. Birk, H. W. and Koepsell, H. (1987) Reaction of monoclonal antibodies with plasmamembrane proteins after binding on nitrocellulose: renaturation of antigenic sites and reduction of nonspecific antibody binding. Anal. Biochem. 164, 12–22.

    Article  PubMed  CAS  Google Scholar 

  95. Celenza, J. L. and Carlson, M. (1991) Renaturation of protein kinase activity of protein blots. Methods Enzymol. 200, 423–430.

    Article  PubMed  CAS  Google Scholar 

  96. Fischer, R., Wei, Y., and Berchtold, M. (1996) Detection of calmodulin-binding proteins using a 32P-labeled GST-calmodulin fusion protein and a novel renaturation protocol. Biotechniques 21, 292–296.

    PubMed  CAS  Google Scholar 

  97. Klinz, F. J. (1994) GTP-blot analysis of small GTP-binding proteins. The C-terminus is involved in renaturation of blotted proteins. Eur. J. Biochem. 225, 99–105.

    Article  PubMed  CAS  Google Scholar 

  98. Shackelford, D. A. and Zivin, J. A. (1993) Renaturation of calcium/calmodulin-dependent protein kinase activity after electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels to membranes. Anal. Biochem. 211, 131–138.

    Article  PubMed  CAS  Google Scholar 

  99. Zeng, F. Y., Oka, J. A., and Weigel, P. H. (1996) Renaturation and ligand blotting of the major subunit of the rat asialoglycoprotein receptor after denaturing polyacrylamide gel electrophoresis. Glycobiology 6, 247–255.

    Article  PubMed  CAS  Google Scholar 

  100. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Plainview, NY, p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Brooks, E., Arrasate, M., Cheung, K., Finkbeiner, S.M. (2004). Using Antibodies to Analyze Polyglutamine Stretches. In: Kohwi, Y. (eds) Trinucleotide Repeat Protocols. Methods in Molecular Biology™, vol 277. Humana Press. https://doi.org/10.1385/1-59259-804-8:103

Download citation

  • DOI: https://doi.org/10.1385/1-59259-804-8:103

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-243-8

  • Online ISBN: 978-1-59259-804-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics