Assessment of In Vitro and In Vivo Mitochondrial Function in Friedreich’s Ataxia and Huntington’s Disease

  • Anthony Schapira
  • Raffaele Lodi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 277)

Huntington’s disease (HD) and Friedreich’s ataxia (FRDA) are associated with defects of respiratory-chain enzyme activities. In the respective disorders, these can be identified in tissue samples from postmortem brain and also during life from skeletal or cardiac muscle samples. The mitochondrial abnormalities are robust and reproducible. In the case of HD, it is uncertain how these mitochondrial defects fit in the pathogenetic cascade. Studies are ongoing to identify whether the respiratory-chain defect present in the brain is expressed in skeletal muscle at the spectrophotometric level. The presence of a bioenergetic defect as identified by 31P magnetic resonance spectroscopy (MRS) suggests that in HD expression of the mutant protein can exert an influence on mitochondrial function in tissues outside the central nervous system (CNS). It would appear that frataxin deficiency has a direct effect on mitochondrial function, either through iron-sulfur cluster construction or through the generation of free radicals. The identification these bioenergetic abnormalities in these neurodegenerative disorders has opened up the prospect for the development of disease-modifying therapies directed to the biochemical abnormalities demonstrated. 31P-MRS studies have detected a deficit of in vivo oxidative phosphorylation in the skeletal muscle of FRDA and HD patients and in the myocardium of FRDA patients. In both FRDA and HD patients, a relationship between the triplet repeat expansion and the extent of in vivo energy metabolism deficit has been shown. The total safety of MRS scans makes them an ideal tool for repeated assessments to monitor disease progression as well as the effect of new therapies. This chapter describes useful methods for assessment of mitochondrial function in vitro and in vivo.

Key Words

In vivo energy metabolism 31P-MRS mitochondrial dysfunction mitochondria Huntington’s disease Friedreich’s ataxia 

References

  1. 1.
    Gusella, J. F. and MacDonald, M. E. (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci. 1, 109–115.CrossRefGoogle Scholar
  2. 2.
    Snell, R. G., MacMillan, J. C., Cheadle, J. P., et al. (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genet. 4, 393–397.PubMedCrossRefGoogle Scholar
  3. 3.
    Difiglia, M., Sapp, E., Chase, K. O., et al. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.PubMedCrossRefGoogle Scholar
  4. 4.
    Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansson, O., Guatteo, E. E., Mercuri, N. B., et al. (2001) Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur. J. Neurosci. 14, 1492–1504.PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper, J. K., Schilling, G., Peters, M. F., et al. (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol.Genet. 7, 783–790.PubMedCrossRefGoogle Scholar
  7. 7.
    Lunkes, A. and Mandel, J. L. (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum. Mol. Genet. 7, 1355–1361.PubMedCrossRefGoogle Scholar
  8. 8.
    Martindale, D., Hackam, A., Wieczorek, A., et al. (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nature Genet. 18, 150–154.PubMedCrossRefGoogle Scholar
  9. 9.
    Saudou, F., Finkbeiner, S., Devys, D., et al. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.PubMedCrossRefGoogle Scholar
  10. 10.
    DiFiglia, M., Sapp, E., Chase, K., et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.PubMedCrossRefGoogle Scholar
  11. 11.
    Velier, J., Kim, M., Schwarz, C., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Stahl, W. L. and Swanson, P. D. (1974) Biochemical abnormalities in Huntington’s chorea brains. Neurology 24, 813–819.PubMedGoogle Scholar
  13. 13.
    Butterworth, J., Yates, C. M., and Reynolds, G. P. (1985) Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gammaglutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases. J. Neurol. Sci. 67, 161–171.PubMedCrossRefGoogle Scholar
  14. 14.
    Brennan, W. A., Jr., Bird, E. D., and Aprille, J. R. (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J. Neurochem. 44, 1948–1950.PubMedCrossRefGoogle Scholar
  15. 15.
    Mann, V. M., Cooper, J. M., Javoy-Agid, F., et al. (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336, 749.PubMedCrossRefGoogle Scholar
  16. 16.
    Gu, M., Gash, M. T., Mann, V. M., et al. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39, 385–389.PubMedCrossRefGoogle Scholar
  17. 17.
    Browne, S. E., Bowling, A. C., MacGarvey, U., et al. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653.PubMedCrossRefGoogle Scholar
  18. 18.
    Parker, W. D., Jr., Boyson, S. J., Luder, A. S., et al. (1990) Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40, 1231–1234.PubMedGoogle Scholar
  19. 19.
    Tabrizi, S. J., Cleeter, M. W., Xuereb, J., et al. (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann. Neurol. 45, 25–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Hausladen, A. and Fridovich, I. (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269, 29,405–29,408.PubMedGoogle Scholar
  21. 21.
    Gardner, P. R., Nguyen, D. D., and White, C. W. (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. USA 91, 12,248–12,252.PubMedCrossRefGoogle Scholar
  22. 22.
    Patel, M., Day, B. J., Crapo, J. D., et al. (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16, 345–355.PubMedCrossRefGoogle Scholar
  23. 23.
    Lodi, R. R., Schapira, A. H., Manners, D., et al. (2000) Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy. Ann. Neurol. 48, 72–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Jenkins, B. G., Koroshetz, W. J., Beal, M. F., et al. (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43, 2689–2695.PubMedGoogle Scholar
  25. 25.
    Jenkins, B. G., Rosas, H. D., Chen, Y. C. I., et al. (1998) 1H NMR spectroscopy studies of Huntington’s disease. Correlations with CAG repeat numbers. Neurology 50, 1357–1365.PubMedGoogle Scholar
  26. 26.
    Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., et al. (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41, 160–165.PubMedCrossRefGoogle Scholar
  27. 27.
    Harding, A. H. (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104, 598–620.CrossRefGoogle Scholar
  28. 28.
    Durr, A., Cossee, M., Agid, Y., et al. (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175.PubMedCrossRefGoogle Scholar
  29. 29.
    Campuzano, V., Montermini, L., Molto’, M. D., et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.PubMedCrossRefGoogle Scholar
  30. 30.
    Lamont, P. J., Davis, M. B., and Wood, N. W. (1997) Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich’s ataxia in 56 patients. Clinical and genetic correlates. Brain 120, 673–680.PubMedCrossRefGoogle Scholar
  31. 31.
    Filla, A., DeMichele, G., Cavalcanti, F., et al. (1996) The relationship between trinucleotite (GAA) repeat length and clinical features in Friedreich ataxia. Am. J. Hum. Genet. 59, 554–560.PubMedGoogle Scholar
  32. 32.
    Isnard, R., Kalotka, H., Durr, A., et al. (1997) Correlation between left ventricular hypertrophy and GAA trinucleotide repeat length in Friedreich’s ataxia. Circulation 95, 2247–2249.PubMedGoogle Scholar
  33. 33.
    Campuzano, V., Montermini, L., Lutz, Y., et al. (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780.PubMedCrossRefGoogle Scholar
  34. 34.
    Babcock, M., DeSilva, D., Oaks, R., et al. (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712.PubMedCrossRefGoogle Scholar
  35. 35.
    Koutnikova, H., Campuzano, V., Foury, F., et al. (1997) Studies of human, mouse and yeast homologoues indicate a mitochondrial function for frataxin. Nature Genet. 16, 345–351.PubMedCrossRefGoogle Scholar
  36. 36.
    Babcock, M., DeSilva, D., Oaks, R., et al. (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712.PubMedCrossRefGoogle Scholar
  37. 37.
    Koutnikova, H., Campuzano, V., and Koenig, M. (1998) Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum. Mol Genet. 7, 1485–1489.PubMedCrossRefGoogle Scholar
  38. 38.
    Priller, J., Scherzer, C. R., Faber, P. W., et al. (1997) Frataxin gene of Friedreich’s ataxia is targeted to mitochondria. Ann. Neurol. 42, 265–269.PubMedCrossRefGoogle Scholar
  39. 39.
    Rotig, A., de Lonlay, P., Chretien, D., et al. (1997) Aconitase and mitochondrial ironsulphur protein deficiency in Friedreich ataxia. Nature Genet. 17, 215–217.PubMedCrossRefGoogle Scholar
  40. 40.
    Bradley, J. L., Blake, J. C., Chamberlain, S., et al. (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum. Mol. Genet. 9, 275–282.PubMedCrossRefGoogle Scholar
  41. 41.
    Melov, S., Coskun, P., Patel, M., et al. (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96, 846–851.PubMedCrossRefGoogle Scholar
  42. 42.
    Puccio, H., Simon, D., Cossee, M., et al. (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nature Genet. 27, 181–186.PubMedCrossRefGoogle Scholar
  43. 43.
    Lodi, R., Rajagopalan, B., Blamire, A. M., et al. (2001) Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy. An in vivo 31P magnetic resonance spectroscopy study. Cardiovasc. Res. 52, 111–119.PubMedCrossRefGoogle Scholar
  44. 44.
    Rabinowitz, M. (1974) Overview on pathogenesis of cardiac hypertrophy. Circ. Res. 35(Suppl. II), 3–11.PubMedGoogle Scholar
  45. 45.
    Antozzi, C. and Zeviani, M. (1997) Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc. Res. 35, 184–199.PubMedCrossRefGoogle Scholar
  46. 46.
    Lodi, R., Cooper, J. M., Bradley, J. L., et al. (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl. Acad. Sci. USA 96, 11,492–11,495.PubMedCrossRefGoogle Scholar
  47. 47.
    Lodi, R., Taylor, D. J., Tabrizi, S. J., et al. (1997) In vivo skeletal muscle mitochondrial function in Leber’s hereditary optic neuropathy assessed by 31P-MR spectroscopy. Ann. Neurol. 42, 573–579.PubMedCrossRefGoogle Scholar
  48. 48.
    Lodi, R., Hart, P. E., Rajagopalan, B., et al. (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann. Neurol. 49, 590–596.PubMedCrossRefGoogle Scholar
  49. 49.
    Ragan, C. I. (1987) Structure of NADH-ubiquinone reductase (Complex I). Curr. Topics Bioenergetics 15, 1–36.Google Scholar
  50. 50.
    King, T. E. (1967) Preparations of succinate-cytochrome-c reductase and the cytochrome b-c1 particle, and reconstitution of succinate-cytochrome-c reductase. Methods Enzymol. 10, 275–296.CrossRefGoogle Scholar
  51. 51.
    Wharton, D. C. and Tzagoloff, A. (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol. 10, 245–250.CrossRefGoogle Scholar
  52. 52.
    Coore, H. G., Denton, R. M., Martin, B. R., et al. (1971) Effects of insulin and adrenaline on rat epididymal-fat-pad pyruvate dehydrogenase. Biochem. J. 123, 38P–39P.PubMedGoogle Scholar
  53. 53.
    Kemp, G. J., Taylor, D. J., and Radda, G. K. (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed. 6, 66–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Ingwall, J. S., Kramer, M. F., and Fifer, M. A. (1985) The creatine kinase system in normal and diseased human myocardium. N. Engl. J. Med. 313, 1050–1054.PubMedCrossRefGoogle Scholar
  55. 55.
    Radda, G. K. (1986) The use of NMR spectroscopy for the understanding of disease. Science 233, 640–645.PubMedCrossRefGoogle Scholar
  56. 56.
    Blamire, A. M., Rajagopalan, B., and Radda, G. K. (1999) Measurement of myocardial pH by saturation transfer in man. Magn. Reson. Med. 41, 198–203.PubMedCrossRefGoogle Scholar
  57. 57.
    Slotboom, J., Boesch, C., and Kreis, R. (1998) Versatile frequency domain fitting using time domain models and prior knowledge. Magn. Reson. Med. 39, 899–911.PubMedCrossRefGoogle Scholar
  58. 58.
    Conway, M. A., Bottomley, P. A., Ouwerkerk, R., et al. (1998) Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans. Circulation 97, 1716–1723.PubMedGoogle Scholar
  59. 59.
    Hardy, C. J., Weiss, R. G., Bottomley, P. A., et al. (1991) Altered high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am. Heart J. 122, 795–801.PubMedCrossRefGoogle Scholar
  60. 60.
    Lodi, R., Kemp, G. J., Iotti, S., et al. (1997) Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy. Magma 5, 165–171.PubMedCrossRefGoogle Scholar
  61. 61.
    Arnold, D. L., Matthews, P. M., and Radda, G. K. (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of P-31 NMR. Magn. Reson. Med. 1, 307–315.PubMedCrossRefGoogle Scholar
  62. 62.
    Veech, R. L., Lawson, J. W. R., Cornell, N. W., et al. (1979) Cytosolic phosphorylation potential. J. Biol. Chem. 254, 6538–6547.PubMedGoogle Scholar
  63. 63.
    Chance, B., Leigh, J., Jr., Kent, J., et al. (1986) Multiple controls of oxidative metabolism of living tissues as studied by 31P MRS. Proc. Natl. Acad. Sci. USA 83, 9458–9462.PubMedCrossRefGoogle Scholar
  64. 64.
    Redfearn, E. R. (1967) Isolation and determination of ubiqinone. Methods Enzymol. 10, 381–384.CrossRefGoogle Scholar
  65. 65.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. (1951) Protein measurement with the folin reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Anthony Schapira
    • 1
  • Raffaele Lodi
    • 2
  1. 1.University Department of Clinical NeurosciencesRoyal Free and University College Medical School, University CollegeUK
  2. 2.Dipartimento di Medicina Clinica, E Biotecnologia Applicata “D. Campanacci,”Universita di Bologna, Policlinico S. OrsolaBolognaItaly

Personalised recommendations