Skip to main content

Simulated Annealing

An Effective Stochastic Optimization Approach to Computational Library Design

  • Protocol
Chemoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 275))

Abstract

We describe here a stochastic optimization protocol for computational library design based on the principle of simulated annealing (SA). We also demonstrate via computer simulation studies that the SA-guided diversity sampling affords higher information content than random sampling in terms of cluster hit rates. Using a tripeptoid library, we show that the SA guided similarity focusing provides important information about reagent selection for combinatorial synthesis. Finally, we report a system that employs the SA protocol for the simultaneous optimization of multiple properties during library design. We propose that the SA technique is an effective optimization method for computational library design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willett, P., Winterman, V., and Bawden, D. (1986) Implementation of nonhierarchic cluster analysis methods in chemical information systems: selection of compounds for bilogical testing and clustering of substructures search output. J. Chem. Inf. Comput. Sci. 26, 109–118.

    CAS  Google Scholar 

  2. Lawson, R. G. and Jurs, P. C. (1990) Cluster analysis of acrylates to guide sampling for toxicity testing. J. Chem. Inf. Comput. Sci. 30, 137–144.

    PubMed  CAS  Google Scholar 

  3. Shemetulskis, N. E., Dunbar, J. B., Dunbar, B. W., Moreland, D. W., and Humblet, C. (1995) Enhancing the diversity of a corporate database using chemical database clustering and analysis. J. Comp.-Aid Molec. Design 9(5), 407–416.

    Article  CAS  Google Scholar 

  4. Barnard, J. M. and Downs, G. M. (1992) Clustering of chemical structures on the basis of two-dimensional similarity measures. J. Chem. Inf. Comput. Sci. 32(6), 644.

    CAS  Google Scholar 

  5. Godden, J. W., Xue, L., Kitchen, D. B., Stahura, F. L., Schermerhorn, E. J., and Bajorath, J. (2002) Median partitioning: a novel method for the selection of representative subsets from large compound pools. J. Chem. Inf. Comput. Sci. 42, 885–893.

    PubMed  CAS  Google Scholar 

  6. Pearlman, R. S. and Smith, K. M. (1998) Novel software tools for chemical diversity. Perspect. Drug Discov. Design 9, 339–353.

    Article  Google Scholar 

  7. Martin, E. J., Blaney, J. M., Siani, M. A., Spellmeyer, D. C., Wong, A. K., and Moos, W. H. (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J. Med. Chem. 38(9), 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  8. Agrafiotis, D. K. (1997) Stochastic algorithms for maximizing molecular diversity. J. Chem. Info. Comput. Sci. 37(5), 841.

    CAS  Google Scholar 

  9. Hassan, M., Bielawski, J. P., Hempel, J. C., and Waldman, M. (1996) Optimization and visualization of molecular diversity and combinatorial libraries. Mol. Div. 2, 64–74.

    Article  CAS  Google Scholar 

  10. Zheng, W., Cho, S. J., Waller, C. L., and Tropsha, A. (1997) Simulated annealing guided evaluation (sage) of diversity: a novel computational tool for diverse chemical library design and database mining. Books Abstracts, 213th ACS National Meeting, San Fracisco, CA, CINF-015.

    Google Scholar 

  11. Sheridan, R. P. and Kearsley, S. K. (1995) Using a genetic algorithm to suggest combinatorial libraries. J. Chem. Inf. Comput. Sci. 35, 310–320.

    CAS  Google Scholar 

  12. Zheng, W., Cho, S. J., and Tropsha, A. (1998) Rational combinatorial library design 1. focus-2d: a new approach to the design of targeted combinatorial chemical libraries. J. Chem. Inf. Comput. Sci. 38(2), 251–258.

    PubMed  CAS  Google Scholar 

  13. Zheng, Q. and Kyle, D. J. (1996) Computational screening of combinatorial libraries. Bioorg. Med. Chem. 4(5), 631–638.

    Article  PubMed  CAS  Google Scholar 

  14. Kick, E. K., Roe, D. C., Skillman, A. G., et al. (1997) Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem. Biol. 4(4), 297–307.

    Article  PubMed  CAS  Google Scholar 

  15. Sun, Y., Ewing, T. J., Skillman, A. G., and Kuntz, I. D. (1998) CombiDOCK: structure-based combinatorial docking and library design. J. Comput. Aided Mol. Des. 12(6), 597–604.

    Article  PubMed  CAS  Google Scholar 

  16. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  17. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple, K. D. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45(12), 2615–2623.

    Article  PubMed  CAS  Google Scholar 

  18. Ajay, A., Walters, W. P., and Murcko, M. A. (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J. Med. Chem. 41(18), 3314–3324. Sadowski, J. and Kubinyi, H. A. (1998) A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41(18), 3325–3329.

    Article  PubMed  CAS  Google Scholar 

  19. Good, A. C. and Lewis, R. A. (1997) New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick. J. Med. Chem. 40(24), 3926–3936.

    Article  PubMed  CAS  Google Scholar 

  20. Gillet, V. J., Willett, P., Bradshaw, J., and Green, D. V. S. (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J. Chem. Inf. Comput. Sci. 39, 169–177.

    CAS  Google Scholar 

  21. Zheng, W., Hung, S. T., Saunders, J. T., and Seibel, G. L. (2000) PICCOLO: a tool for combinatorial library design via multicriterion optimization. Pac. Symp. Biocomput. 588–599.

    Google Scholar 

  22. Gillet, V. J., Khatib, W., Willett, P., Fleming, P. J., and Green, D. V. (2002) Combinatorial library design using a multiobjective genetic algorithm. J. Chem. Inf. Comput. Sci. 42(2), 375–385.

    PubMed  CAS  Google Scholar 

  23. Agrafiotis, D. K. (2002) Multiobjective optimization of combinatorial libraries. J. Comput. Aid. Mol. Des. 16, 335–356.

    Article  CAS  Google Scholar 

  24. Frye, S. (1999) Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem. Biol. 6(1), R3–R7.

    Article  PubMed  CAS  Google Scholar 

  25. Zheng, W. and Lampe, J. (2002) Combinatorial optimization approaches to the design of focused, diverse, and target class oriented libraries. Cambridge Healthtech Institute’s Sixth Annual Cheminformatics, Philadelphia, PA.

    Google Scholar 

  26. Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.

    Article  PubMed  CAS  Google Scholar 

  27. Forrest, S. (1993) Genetic algorithms: principles of adaptation applied to computation. Science 261, 872–878.

    Article  PubMed  CAS  Google Scholar 

  28. Zheng, W., Cho, S. J., Waller, C. L., and Tropsha, A. (1999) Rational combinatorial library design. 3. Simulated annealing guided evaluation (SAGE) of molecular diversity: a novel computational tool for universal library design and database mining. J. Chem. Inf. Comput. Sci. 39(4), 738–746.

    PubMed  CAS  Google Scholar 

  29. Cvijovic, D. and Klinowski, J. (1995) Taboo search—an approach to the multiple minima problem. Science 267, 664–666.

    Article  CAS  Google Scholar 

  30. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H. (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.

    Article  CAS  Google Scholar 

  31. Sun, L., Xie, Y., Song, X., Wang, J., and Yu, R. (1994) Cluster analysis by simulated annealing. Comput. Chem. 18, 103–108.

    Article  Google Scholar 

  32. Kier, L. B. and Hall, L. H. (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York.

    Google Scholar 

  33. Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J. Chem. Inf. Comput. Sci. 25, 64–73.

    CAS  Google Scholar 

  34. Daylight Chemical Information Software, version 4.51, Daylight Chemical Information Systems, Inc., 27401 Los Altos, Mission Viejo, CA 92691.

    Google Scholar 

  35. Zuckermann, R. N., Martin, E. J., Spellmeyer, D. C., et al. (1994) Discovery of nanomolar ligands for 7-transmembrane g-protein-coupled receptors from a diverse n-(substituted)glycine peptoid library. J. Med. Chem. 37, 2678–2685.

    Article  PubMed  CAS  Google Scholar 

  36. 4-component Ugi reaction. Advanced ChemTech handbook of combinatorial and solid phase organic chemistry. Advanced ChemTech, p. 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Zheng, W. (2004). Simulated Annealing. In: Bajorath, J. (eds) Chemoinformatics. Methods in Molecular Biology™, vol 275. Humana Press. https://doi.org/10.1385/1-59259-802-1:379

Download citation

  • DOI: https://doi.org/10.1385/1-59259-802-1:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-261-2

  • Online ISBN: 978-1-59259-802-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics