Skip to main content

Derivation and Applications of Molecular Descriptors Based on Approximate Surface Area

  • Protocol
Chemoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 275))

Abstract

Three sets of molecular descriptors that can be computed from a molecular connection table are defined. The descriptors are based on the subdivision and classification of the molecular surface area according to atomic properties (such as contribution to logP, molar refractivity, and partial charge). The resulting 32 descriptors are shown (a) to be weakly correlated with each other; (b) to encode many traditional molecular descriptors; and (c) to be useful for QSAR, QSPAR, and compound classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansch, C. and Fujita, T. (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626

    Article  CAS  Google Scholar 

  2. Leo, A., Hansch, C., and Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. J. Med. Chem. 12, 766–771.

    Article  PubMed  CAS  Google Scholar 

  3. Abraham, M. H. and Platts, J. A. (2001) Hydrogen bond structural group constants. J. Org. Chem. 66(10), 3484–3491.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, L. H. and Kier, L. B. (1991) The molecular connectivity chi indices and kappa shape indices in structure-property modeling. In Reviews of computational chemistry, Boyd, D. B. and Lipkowitz, K. (eds.), Vol. 2.

    Google Scholar 

  5. Klamt, A. and Schuurmann, G. (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805.

    Google Scholar 

  6. Wodak, S. J. and Janin, J. (1980) Analytical approximation to the solvent accessible surface area of proteins. Proc. Natl. Acad. Sci. USA 77, 1736–1740.

    Article  PubMed  CAS  Google Scholar 

  7. Halgren, T. A. (1996) MMFF94: The Merck force field. J. Comp. Chem. 17(5), 490–512.

    Article  CAS  Google Scholar 

  8. Wildman, S. A. and Crippen, G. M. (1999) Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39(5), 868–873.

    CAS  Google Scholar 

  9. Maybridge Chemical Company Ltd., Cornwall, PL34 OHW England. URL: http://www.maybridge.co.uk.

  10. Gasteiger, J. and Marsali. M. (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36, 3219–3225.

    Article  CAS  Google Scholar 

  11. Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J. (1984) Classification and regression trees. Wadsworth Inc.

    Google Scholar 

  12. Labute, P. (1999) Binary QSAR: a new method for quantitative structure activity relationships. Proceedings of the 1999 Pacific Symposium, World Scientific Publishing, Singapore.

    Google Scholar 

  13. Balaban, A. T. (1979) Five new topological indices for the branching of tree-like graphs. Theor. Chim. Acta 53, 355–375.

    Article  CAS  Google Scholar 

  14. Petitjean, M. (1992) Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 32, 331–337.

    CAS  Google Scholar 

  15. Pearlman, R. S. and Smith, K. M. (1998) Novel software tools for chemical diversity. Perspectives Drug Discovery Design 9, 339–353.

    Article  Google Scholar 

  16. Todeschini, R., Lasagni, R., and Marengo, E. (1994) New molecular descriptors for 2D and 3D structures. Theory. J. Chemometrics 8, 263–272.

    CAS  Google Scholar 

  17. Wiener, H. (1947) Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers, D. and Hopfinger, A. J. (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 34, 854–866.

    CAS  Google Scholar 

  19. Viswanadhan, V. N., Ghose, A. K., Singh, U. C., and Wendoloski, J. J. (1999) Prediction of solvation free energies of small organic moleucles: additive-constitutive models based on molecular fingerprints and atomic constants. J. Chem. Inf. Comput. Sci. 39, 405–412.

    CAS  Google Scholar 

  20. Luco, J. M. (1999) Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least squares (PLS) methodology. J. Chem. Info. Comput. Sci. 36, 396–404.

    Google Scholar 

  21. Syracuse Research Corporation, 6225 Running Ridge Road, North Syracuse, NY 13212 (URL:http://www.syrres.com).

  22. Pearlman, R. S. and Smith, K. M. (1999) Metric validation and the receptor-relevant subspace concept. J. Chem. Inf. Comput. Sci. 39, 28–35.

    CAS  Google Scholar 

  23. Crippen, G. M. (1999) VRI: 3D QSAR at variable resolution. J. Chem. Inf. Comput. Sci. 20, 1577–1585.

    CAS  Google Scholar 

  24. Pearlman, R. S. and Smith, K. M. (1998) Novel software tools for chemical diversity. Perspectives Drug Discovery Design 9, 339–353.

    Article  Google Scholar 

  25. Burden, F. R. (1989) Molecular identification number for substructure searches. J. Chem. Inf. Comput. Sci. 29, 225–227.

    CAS  Google Scholar 

  26. Stanton, D. T. (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 39, 11–20.

    CAS  Google Scholar 

  27. Bohm, M., Sturzebecher, J., and Klebe, G. (1999) Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin and factor Xa. J. Med. Chem. 42, 458–477.

    Article  PubMed  CAS  Google Scholar 

  28. Labute, P. (1998,1999) Unpublished work.

    Google Scholar 

  29. Xue, L., Godden, J., Gao, H., and Bajorath, J. (1999) Identification of a preferred set of molecular descriptors for compound classification based on principal component analysis. J. Chem. Inf. Comput. Sci. 39, 699–674.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Labute, P. (2004). Derivation and Applications of Molecular Descriptors Based on Approximate Surface Area. In: Bajorath, J. (eds) Chemoinformatics. Methods in Molecular Biology™, vol 275. Humana Press. https://doi.org/10.1385/1-59259-802-1:261

Download citation

  • DOI: https://doi.org/10.1385/1-59259-802-1:261

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-261-2

  • Online ISBN: 978-1-59259-802-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics