Skip to main content

Methods for Applying the Quantitative Structure-Activity Relationship Paradigm

  • Protocol
Chemoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 275))

Abstract

There are several Quantitative Structure-Activity Relationship (QSAR) methods to assist in the design of compounds for medicinal use. Owing to the different QSAR methodologies, deciding which QSAR method to use depends on the composition of system of interest and the desired results. The relationship between a compound’s binding affinity/activity to its structural properties was first noted in the 1930s by Hammett (1,2) and later refined by Hansch and Fujita (3) in the mid-1960s. In 1988 Cramer and coworkers (4) created Comparative Molecular Field Analysis (CoMFA) incorporating the three-dimensional (3D) aspects of the compounds, specifically the electrostatic fields of the compound, into the QSAR model. Hopfinger and coworkers (5) included an additional dimension to 3D-QSAR methodology in 1997 that eliminated the question of “Which conformation to use in a QSAR study?”, creating 4D-QSAR. In 1999 Chemical Computing Group Inc. (6) (CCG) developed the Binary-QSAR (7) methodology and added novel 3D-QSAR descriptors to the traditional QSAR model allowing the 3D properties of compounds to be incorporated into the traditional QSAR model. Recently CCG released Probabilistic Receptor Potentials (8) to calculate the substrate’s atomic preferences in the active site. These potentials are constructed by fitting analytical functions to experimental properties of the substrates using knowledge-based methods. An overview of these and other QSAR methods will be discussed along with an in-depth examination of the methodologies used to construct QSAR models. Also, included in this chapter is a case study of molecules used to create QSAR models utilizing different methodologies and QSAR programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shorter, J. (1998) Linear free energy relationships (LFER). In Encyclopedia of computational chemistry. P. von Ragué Schleyer (ed.). John Wiley & Sons, Chichester, Vol. 2, pp. 1487–1496.

    Google Scholar 

  2. Kubinyi, H. (1998) Quantitative structure-activity relationships in drug design. Encyclopedia of computational chemistry, P. von Ragué Schleyer (ed.), John Wiley & Sons, Chichester, Vol. 3, pp. 2309–2320.

    Google Scholar 

  3. Hansch, C. and Fujita, T. (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626.

    CAS  Google Scholar 

  4. Cramer III, R. D., Patterson, D. E., and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steriods to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967.

    CAS  Google Scholar 

  5. Hopfinger, A. J., Wang, S., Tokarski, J. S., et al. (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J. Am. Chem. Soc. 119, 10,509–10,524.

    CAS  Google Scholar 

  6. Chemical Computing Group Inc. (2001) Molecular Operating Environment. 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, H3A 2R7, Canada. http://www.chemcomp.com.

  7. Labute, P. (2001) Binary QSAR: A new technology for HTS and UHTS data analysis. J. Chem. Comput. Grp., http://www.chemcomp.com/feature/htsbqsar.htm.

  8. Labute, P. (2001) Probabilistic receptor potentials. J. Chem. Comput. Grp., http://www.chemcomp.com/feature/cstat.htm.

  9. van de Waterbeemd, H. (ed.) (2001) Newsletter. http://www.qsar.org/news/QSARoct2001.pdf.

  10. Free, S. M., Jr. and Wilson, J. W. (1964) A mathematical contribution to structureactivity studies. J. Med. Chem. 7, 395–399.

    PubMed  CAS  Google Scholar 

  11. Robinson, D. D., Winn, P. J., Lyne, P. D. and Richards, W. G. (1999) Selforganizing molecular field analysis: a tool for structure-activity studies. J. Med. Chem. 42, 573–583. SOMFA is available at http://bellatrix.pcl.ox.ac.uk/downloads/.

    PubMed  CAS  Google Scholar 

  12. Tripos Inc. (2003) SYBYL. 1699 South Hanley Road, Saint Louis, MO 63144, USA. http://www.tripos.com.

  13. Accelrys Inc. (2003) Insight II. 9685 Scranton Road, San Diego, CA 92121-3752. http://www.accelrys.com.

  14. Clark, D. E. (2000) Evolutionary algorithms in molecular design. Methods and principles in medicinal chemistry, Mannhold, R., Kubinyi, H., and Timmerman, H. (eds.), Wiley-VCH, Vol. 8, Weinheim, Federal Republic of Germany.

    Google Scholar 

  15. Holland, J. H. (1975) Adaptation in natural and artificial systems. Ann Arbor, MI.

    Google Scholar 

  16. Cristianini, N. and Shawe-Taylor, J. (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge, UK, and New York, NY.

    Google Scholar 

  17. Manly, B. F. J. (1994) Multivariate statistical methods. A primer. Chapman and Hall, New York.

    Google Scholar 

  18. Grimm, L. G. and Yarnold, P. R., Eds. (1995) Reading and understanding multivariate statistics. American Psychological Association, Washington, DC.

    Google Scholar 

  19. Pearson, K. (1901) On lines and planes of closest fit to a system of points in space. Philosophical Mag. 2, 557–572.

    Google Scholar 

  20. Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components. J. Educat. Psychol. 24, 417–441, 498–520.

    Google Scholar 

  21. Glen, W. G., Dunn, W. J., III, and Scott, D. R. (1989) Principal components analysis and partial least squares regression. Tetrahedron Comput. Meth. 2, 349–376.

    Google Scholar 

  22. Lindberg, W., Persson, J.-Å, and Wold, S. (1983) Partial least-squares methods for spectrofluorimetric analysis of mixtures of humic acid and ligninsulfonate. Anal. Chem. 55, 643–648.

    CAS  Google Scholar 

  23. Dunn III, W. J., Wold, S., Edlund, U., and Hellberg, S. (1984) Multivariate structureactivity relationships between data from a battery of biological tests and an ensemble of structure descriptors. Quant. Struct.-Act. Relat. 3, 131–137.

    CAS  Google Scholar 

  24. Gasteiger, J. and Zupan, J. (1993) Neuronale Netze in der Chemie. Angew. Chem. 105, 510–536.

    CAS  Google Scholar 

  25. Zupan, J. and Gasteiger, J. (1999) Neural networks in chemistry and drug design. Wiley-VCH, Weinheim, Federal Republic of Germany.

    Google Scholar 

  26. Hopfinger, A. J. (1980) A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J. Am. Chem. Soc. 102, 7196–7206.

    CAS  Google Scholar 

  27. Hopfinger, A. J., Reaka, A., Venkatarangan, P., Duca, J. S., and Wang, S. (1999) Construction of a virtual high throughput screen by 4D-QSAR analysis: application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b. J. Chem. Inf. Comput. Sci. 39, 1151–1160.

    CAS  Google Scholar 

  28. Chemical Computing Group Inc. (2002) Molecular Operating Environment. 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, H3A 2R7, Canada. http://www.chemcomp.com.

  29. Klebe, G., Abraham, U., and Mietzner, T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37, 4130–4146.

    PubMed  CAS  Google Scholar 

  30. Kearsley, S. K. and Smith, G. M. (1990) An alternative method for the alignment of molecular structures: maximizing electrostatic and steric overlap. Tetrahedron Comput. Meth. 3, 615–633.

    CAS  Google Scholar 

  31. Wagener, M., Sadowski, J., and Gasteiger, J. (1995) Autocorrelation of molecular surface properties for modeling corticosteriod binding globulin and cytosolic Ah receptor activity by neural networks. J. Am. Chem. Soc. 117, 7769–7775.

    CAS  Google Scholar 

  32. Schuur, J. H., Selzer, P., and Gasteiger, J. (1996) The coding of the threedimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J. Chem. Inf. Comput. Sci. 36, 334–344.

    CAS  Google Scholar 

  33. Silverman, B. D. and Platt, D. E. (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J. Med. Chem. 39, 2129–2140.

    PubMed  CAS  Google Scholar 

  34. Sadowski, J. and Gasteiger, J. (1993) From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chemical Rev. 93, 2567–2581.

    CAS  Google Scholar 

  35. Sadowski, J., Gasteiger, J., and Klebe, G. (1994) Comparison of automatic threedimensional model builders using 639 x-ray structures. J. Chem. Inf. Comput. Sci. 31, 1000–1008.

    Google Scholar 

  36. Lemmen, C. and Lengauer, T. (2000) Computational methods for the structural alignment of molecules. J. Comput.-Aided Mol. Des. 14, 215–232.

    PubMed  CAS  Google Scholar 

  37. Lemmen, C., Lengauer, T., and Klebe, G. (1998) FlexS: a method for fast flexible ligand superposition. J. Med. Chem. 41, 4502–4520.

    PubMed  CAS  Google Scholar 

  38. Handschuh, S., Wagener, M., and Gasteiger, J. (1998) Superposition of threedimensional chemical structures allowing the conformational flexibility by a hybrid method. J. Chem. Inf. Comput. Sci. 38, 220–232.

    PubMed  CAS  Google Scholar 

  39. Labute, P. (1999) Flexible alignment of small molecules. J. Chem. Comput. Grp. http://www.chemcomp.com/feature/malign.htm.

  40. Heritage, T. W., Ferguson, A. M., Turner, D. B., and Willett, P. (1998) EVA: a novel theoretical descriptor for QSAR studies. Persp. Drug Disc. Des. 9/10/11, 381–398.

    CAS  Google Scholar 

  41. Labute, P. (1998) QuaSAR-Binary: a new method for the analysis of high throughput screening data. http://www.netsci.org/Science/Compchem/feature21.htm.

  42. Vedani, A. and Dobler, M. (2002) 5D-QSAR: the key for simulating induced fit? J. Med. Chem. 45, 2139–2149.

    PubMed  CAS  Google Scholar 

  43. Venkatarangan, P. and Hopfinger, A. J. (1999) Prediction of ligand-receptor binding free energy by 4D-QSAR analysis: application to a set of glucose analogue inhibitors of glycogen phosphorylase. J. Chem. Inf. Comput. Sci. 39, 1141–1150.

    CAS  Google Scholar 

  44. Kulkarni, A. S., Han, Y., and Hopfinger, A. J. (2002) Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J. Chem. Inf. Comput. Sci. 42, 331–342.

    PubMed  CAS  Google Scholar 

  45. Chatterjee, S., Hadi, A. S., and Price, B. (2000) Regression analysis by example. Wiley-Interscience, New York.

    Google Scholar 

  46. Halgren, T. A. (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performace of MMFF94. J. Comput. Chem. 17, 490–519.

    CAS  Google Scholar 

  47. Halgren, T. A. (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17, 520–552.

    CAS  Google Scholar 

  48. Halgren, T. A. (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 17, 553–586.

    CAS  Google Scholar 

  49. Halgren, T. A. and Nachbar, R. B. (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem. 17, 587–615.

    CAS  Google Scholar 

  50. Halgren, T. A. (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17, 616–641.

    CAS  Google Scholar 

  51. Halgren, T. A. (1999) MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20, 720–729.

    CAS  Google Scholar 

  52. Halgren, T. A. (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and intermolecularinteraction energies and geometries. J. Comput. Chem. 20, 730–748.

    CAS  Google Scholar 

  53. Weiner, S. J., Kollman, P. A., Case, D. A., et al. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784.

    CAS  Google Scholar 

  54. Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    CAS  Google Scholar 

  55. Fabricius, J., Engelsen, S. B., and Rasmussen, K. (1997) The consistent force field. 5. PEF95SAC: optimized potential energy function for alcohols and carbohydrates. J. Carbohydr. Chem. 16, 751–772.

    CAS  Google Scholar 

  56. Jorgensen, W. L. and Tirado-Rives, J. (1988) The OPLS potential function for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.

    CAS  Google Scholar 

  57. Maxwell, D. S., Tirado-Rives, J., and Jorgensen, W. L. (1995) A comprehensive study of the rotational energy profiles of organic systems by ab initio MO theory, forming a basis for peptide torsional parameters. J. Comput. Chem. 16, 984–1010.

    CAS  Google Scholar 

  58. Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11,225–11,236.

    CAS  Google Scholar 

  59. Jorgensen, W. L. and McDonald, N. A. (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J. Mol. Struct. (Theochem.) 424, 145–155.

    CAS  Google Scholar 

  60. McDonald, N. A. and Jorgensen, W. L. (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J. Phys. Chem. B 102, 8049–8059.

    CAS  Google Scholar 

  61. Rizzo, R. C. and Jorgensen, W. L. (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 121, 4827–4836.

    CAS  Google Scholar 

  62. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    CAS  Google Scholar 

  63. Roux, B. (1990) Theoretical study of ion transprot in the gramicidin A channel. Harvard University, Cambridge, MA.

    Google Scholar 

  64. Stote, R. H. and Karplus, M. (1995) Zinc binding in proteins and solution: a simple but accurate nonbonded representation. PROTEINS: Structure, Function, and Genetics 23, 12–31.

    CAS  Google Scholar 

  65. MacKerell, Jr., A. D. (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J. Phys. Chem. 99, 1846–1855.

    CAS  Google Scholar 

  66. Schlenkrich, M., Brickmann, J., MacKerell Jr., A. D., and Karplus, M. (1996) An empirical potential energy function for phospholipids: criteria for parameter optimization and application. In Biological membranes: a molecular perspective from computational and experiment, Merz Jr., K. M. and Roux, B. (eds.), Birkhäuser, Boston, 31–81.

    Google Scholar 

  67. Feller, S. E., Yin, D., Pastor, R. W., and MacKerell Jr., A. D. (1997) Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys. J. 73, 2269–2279.

    PubMed  CAS  Google Scholar 

  68. MacKerell Jr., A. D., Bashford, D., Bellott, M., et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.

    CAS  Google Scholar 

  69. Engh, R. A. and Huber, R. (1991) Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallograph. A A47, 392–400.

    CAS  Google Scholar 

  70. Gasteiger, J. and Marsili, M. (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36, 3219–3228.

    CAS  Google Scholar 

  71. Mortier, W. J., Van Genechten, K., and Gasteiger, J. (1985) Electronegativity equalization: application and parametrization. J. Am. Chem. Soc. 107, 829–835.

    CAS  Google Scholar 

  72. Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. (1998) Gaussian 98, Revision A.9, Gaussian Inc., Pittsburgh, Pennsylvaina. http://www.gaussian.com.

    Google Scholar 

  73. Stewart, J. J. P. (1996) Applications of localized molecular orbitals to the solution of semiemperical self consistent field equations. Int. J. Quantum Chem. 58, 133–146.

    CAS  Google Scholar 

  74. Fujitsu Limited (Stewart, J.J.P.). (1999) MOPAC 2002. Tokyo, Japan. http://www.cachesoftware.com/.

  75. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., et al. (1993) GAMESS. J. Comput. Chem. 14, 1347–1363.

    CAS  Google Scholar 

  76. Nicklaus, M. C., Wang, S., Driscoll, J. S., and Milne, G. W. A. (1995) Conformational changes of small molecules binding to proteins. Bioorganic Med. Chem. 3, 411–428.

    CAS  Google Scholar 

  77. Vieth, M., Hirst, J. D., and III, C. L. B. (1998) Do active site conformations of small ligands correspond to low free-energy solution structures? J. Comput.-Aided Mol. Des. 12, 563–572.

    PubMed  CAS  Google Scholar 

  78. Frenkel, D. and Smit, B. (1996) Understanding molecular simulation. Academic, New York.

    Google Scholar 

  79. Field, M. J. (1999) A practical introduction to the simulation of molecular systems. Cambridge, University Press, New York.

    Google Scholar 

  80. Leach, A. R. (2001) Molecular modelling: principles and applications. Pearson Education Limited, Harlow, England.

    Google Scholar 

  81. Murcko, M. A. (1997) Recent advances in ligand design methods. In Reviews in computational chemistry, Lipkowitz, K. B. and Boyd, D. B. (eds.), Wiley-VCH, New York, Vol. 11, pp. 1–66.

    Google Scholar 

  82. Muegge, I. and Rarey, M. (2001) Small molecule docking and scoring. In Reviews in computational chemistry, Lipkowitz, K. B. and Boyd, D. B. (eds.), Wiley-VCH, New York, Vol. 17, pp. 1–60.

    Google Scholar 

  83. Leach, A. R. (1991) A survey of methods for searching the conformational space of small and medium-sized molecules. In Reviews in computational chemistry Lipkowitz, K. B. and Boyd, D. B. (eds.), VCH Publishers, New York, Vol. 2, pp. 1–55.

    Google Scholar 

  84. Ferguson, D. M. and Raber, D. J. (1989) A new approach to probing conformational space with molecular mechanics: random incremental pulse search. J. Am. Chem. Soc. 111, 4371–4378.

    CAS  Google Scholar 

  85. Kubinyi, H. (1998) Comparative molecular field analysis (CoMFA). In Encyclopedia of computational chemistry, von Ragué Schleyer, P. (ed.), John Wiley & Sons Inc., Chichester, Vol. 1, pp. 448–460.

    Google Scholar 

  86. Wildman, S. A. and Crippen, G. M. (1999) Prediction of physiochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868–873.

    CAS  Google Scholar 

  87. Hall, L. H. and Kier, L. B. (1977) The nature of structure-activity relationships and their relation to molecular connectivity. Eur. J. Med. Chem. 12-Chim. Therap. 4, 307–312.

    Google Scholar 

  88. Hall, L. H. and Kier, L. B. (1991) The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling. In Reviews in Computational Chemistry, Lipkowitz, K. B. and Boyd, D. B. (eds.), VCH Publishers, Inc., New York, Vol. 2, pp. 367–422.

    Google Scholar 

  89. Wiener, H. (1947) Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20.

    PubMed  CAS  Google Scholar 

  90. Balaban, A. T. (1979) Five new topological indices for the branching of tree-lite graphs. Theor. Chim. Acta 53, 355–375.

    CAS  Google Scholar 

  91. Balaban, A. T. (1982) Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404.

    CAS  Google Scholar 

  92. Petitjean, M. (1992) Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 32, 331–337.

    CAS  Google Scholar 

  93. Levinthal, C. (1969) How to fold graciously. Mossbauer Spectroscopy in Biological Systems, Allerton House, Monticello, IL, University of Illinois Press.

    Google Scholar 

  94. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.

    PubMed  CAS  Google Scholar 

  95. Aarts, E. H. L. (1989) Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. Wiley, New York.

    Google Scholar 

  96. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.

    CAS  Google Scholar 

  97. Michalewicz, Z. (1994) Genetic algorithms + data structures = evolution programs. Springer-Verlag, New York.

    Google Scholar 

  98. Parrill, A. L. (2000) Introduction to evolutionary algorithms. In Evolutionary algorithms in molecular design, Clark, D. E. (ed.), Wiley-VCH, Weinheim, Federal Republic of Germany, Vol. 8, pp. 1–13.

    Google Scholar 

  99. Devillers, J. (ed.) (1996) Genetic algorithms in molecular modeling. Academic Press, London.

    Google Scholar 

  100. Clark, D. E., Ed. (2000) Evolutionary algorithms in molecular design. Methods and Principles in Medicinal Chemistry. Wiley-VCH, Weinheim, Federal Republic of Germany.

    Google Scholar 

  101. Rogers, D. and Hopfinger, A. J. (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structureproperty relationships. J. Chem. Inf. Comput. Sci. 34, 854–866.

    CAS  Google Scholar 

  102. Hopfinger, A. J. (1981) Inhibition of dihydrofolate reductase: structure-activity correlations of 2,4-diamino-5-benzylpyrimidines based upon molecular shape analysis. J. Med. Chem. 24, 818–822.

    PubMed  CAS  Google Scholar 

  103. Friedman, J. [November 1988 (revised August 1990)] Multivariate adaptive regression splines, technical report number 102. Laboratory for Computational Statistics, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  104. Rosenblatt, R. (1959) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408.

    Google Scholar 

  105. Wold, S. and Sjöström, M. (1998) Chemometrics, present and future success. Chemometrics and Intelligent Laboratory Systems 44, 3–14.

    CAS  Google Scholar 

  106. Lavine, B. K. (1998) Chemometrics. Anal. Chem. 70, 209R–228R.

    CAS  Google Scholar 

  107. Lavine, B. K. (2000) Chemometrics. Anal. Chem. 72, 91R–97R.

    Google Scholar 

  108. Schneider, G. and Wrede, P. (1998) Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 70, 175–222.

    PubMed  CAS  Google Scholar 

  109. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001) An introduction to kernel-based learning algorithms. IEEE Trans. Neural Net. 12, 181–201 http://mlg.anu.edu.au/raetsch/ps/review.pdf.bz2 or http://mlg.anu.edu.au/raetsch/ps/review.ps.gz.bz2.

    Google Scholar 

  110. Kshirsagar, A. M. (1972) Multivariate analysis. Marcel Dekker, Inc., New York.

    Google Scholar 

  111. Wold, S., Sjöström, M., and Ericksson, L. (1998) Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry, von Ragué Schleyer, P. (ed.), John Wiley & Sons, Chichester, Vol. 3, pp. 2006–2021.

    Google Scholar 

  112. So, S.-S. and Karplus, M. (1996) Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. J. Med. Chem. 39, 1521–1530.

    PubMed  CAS  Google Scholar 

  113. So, S.-S. and Karplus, M. (1996) Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors. J. Med. Chem. 39, 5246–5256.

    PubMed  CAS  Google Scholar 

  114. Yasri, A. and Hartsough, D. (2001) Toward an optimal procedure for variable selection and QSAR model building. J. Chem. Inf. Comput. Sci. 41, 1218–1227.

    PubMed  CAS  Google Scholar 

  115. Warmuth, M. K., Liao, J., Rätsch, G., Mathieson, M., Putta, S., and Lemmen, C. (2003) Active Learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci. 43, 667–673.

    PubMed  CAS  Google Scholar 

  116. Ivanciuc, O. (2002) Support vector machine idetification of the aquatic toxicity mechanism of organic compunds. Internet Electronic Journal of Molecular Design and BioChem Press 1, 157–172 (http://www.biochempress.com/av01_0157.html and ftp://biochempress.com/iejmd_2002_1_0157.pdf).

    Google Scholar 

  117. Burbidge, R., Trotter, M., Holden, S., and Buxton, B. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers and Chemistry 26, 4–15 (http://stats.ma.ic.ac.uk/rdb/pubs/aisb00rbmtfinal.pdf).

    Google Scholar 

  118. Gao, H., Williams, C., Labute, P., and Bajorath, J. (1999) Binary quantitative structure-activity relationship (QSAR) analysis of estrogen receptor ligands. J. Chem. Inf. Comput. Sci. 39, 164–168.

    PubMed  CAS  Google Scholar 

  119. Stahura, F. L., Godden, J. W., Xue, L., and Bajorath, J. (2000) Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J. Chem. Inf. Comput. Sci. 40, 1245–1252.

    PubMed  CAS  Google Scholar 

  120. Gao, H. (2001) Application of BCUT metrics and genetic algorithm in binary QSAR analysis. J. Chem. Inf. Comput. Sci. 41, 402–407.

    PubMed  CAS  Google Scholar 

  121. Shao, J. (1993) Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494.

    Google Scholar 

  122. Besalú E. (2001) Fast computation of cross-validated properties in full linear leave-many-out procedures. J. Math. Chem. 29, 191–204.

    Google Scholar 

  123. Tropsha, A., Zheng, W., and Cho, S. J. (1996) Application of topological indices in rational design of combinatorial chemical libraries. Book of Abstracts, 211th ACS National Meeting, New Orleans, LA, March 22–28, American Chemical Society: Washington, DC.

    Google Scholar 

  124. Cho, S. J., Zheng, W., and Tropsha, A. (1998) Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J. Chem. Inf. Comput. Sci. 38, 259–268.

    PubMed  CAS  Google Scholar 

  125. Graham, J. D. P., and Karrar, M. A. (1963) Structure-action relations in N,N-dimethyl-2-halogenophenethylamines. J. Med. Chem. 6, 103–107.

    PubMed  CAS  Google Scholar 

  126. Hansch, C. and Lien, E. J. (1968) An analysis of the structure-activity relationship in the adrenergic blocking activity of the β-haloalkylamines. Biochem. Pharmacol. 17, 709–720.

    PubMed  CAS  Google Scholar 

  127. Unger, S. H. and Hansch, C. (1973) On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of β-halo-β-arylakylamines. J. Med. Chem. 16, 745–749.

    PubMed  CAS  Google Scholar 

  128. Ponder, J. (1999) QSAR. Dept. of Biochemistry & Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA. (Available from http://dasher.wustl.edu/.)

    Google Scholar 

  129. Labute, P. and Santavy, M. (2000) SVL: The scientific vector language. J. Chem. Comput. Grp. http://www.chemcomp.com/feature/svl.htm.

  130. Cammarata, A. (1972) Interrelationship of the regression models used for structure-activity analyses. J. Med. Chem. 15, 573–577.

    PubMed  CAS  Google Scholar 

  131. Chemical Computing Group, Inc. (Labute, P.). (1998) MOE logP(Octanol/Water) model. 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, H3A 2R7, Canada (http://www.chemcomp.com).

  132. Becke, A. D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652.

    CAS  Google Scholar 

  133. Lee, C., Yang, W., and Parr, R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789.

    CAS  Google Scholar 

  134. Dunning, T. H., Jr. and Hay, P. J. (1977). Modern theoretical chemistry Schaefer III, H. F. (ed.), Plenum Press, New York, Vol. 3, pp. 1–27.

    Google Scholar 

  135. Hay, P. J. and Wadt, W. R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–283.

    CAS  Google Scholar 

  136. Wadt, W. R. and Hay, P. J. (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82 284–298.

    CAS  Google Scholar 

  137. Hay, P. J. and Wadt, W. R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core oribitals. J. Chem. Phys. 82, 299–310.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Esposito, E.X., Hopfinger, A.J., Madura, J.D. (2004). Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. In: Bajorath, J. (eds) Chemoinformatics. Methods in Molecular Biology™, vol 275. Humana Press. https://doi.org/10.1385/1-59259-802-1:131

Download citation

  • DOI: https://doi.org/10.1385/1-59259-802-1:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-261-2

  • Online ISBN: 978-1-59259-802-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics