Skip to main content

In Vitro Drug Metabolite Profiling Using Hepatic S9 and Human Liver Microsomes

  • Protocol

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Following oral administration to animals and humans, drugs are absorbed, transported via portal circulation to the liver, and metabolized primarily via this organ. In general, drugs are predominantly metabolized by the oxidation of parent drug, which is typically mediated by cytochrome P450 (CYP450) enzymes. To a lesser degree, flavin monooxidation (FMO), as well as the reduction or cleavage of the parent drug via enzymatic (i.e., esterase and amidase) or nonenzymatic hydrolysis, forms other phase I metabolites. Subsequent conjugation (phase II reaction) of the phase I metabolites can produce glucuronide, sulfate, glutathione, glycine, and acetate conjugated metabolites. In many cases, hepatic in vitro metabolism studies can yield valuable preliminary information on the in vivo metabolism of a compound of interest by the liver. Experimental in vitro hepatic systems using hepatocytes, 9000g supernatant (S9), and microsomal fractions are presently used to characterize the in vitro metabolism of xenobiotics. Following the incubation of drugs with either of the systems above, solvent or solid-phase extraction, radio-TLC (14C/3H-labeled drugs), high-performance liquid chromatography (HPLC) (radiolabeled or unlabeled), liquid chromatography/mass spectrometry (LC/MS), nuclear magnetic resonance (NMR), and derivatization (phenolic, alcoholic, carboxylic, and/or amino metabolites) techniques are commonly used to analyze and evaluate the metabolic stability of drugs (percentage of parent remaining), as well as to quantify, characterize, and identify drug metabolites and their derivatives. In this chapter, valuable in vitro methods using animal and human hepatic S9, as well as human liver microsomal fractions, and unique techniques for estimating and understanding metabolic stability, as well as profiling and identifying metabolites, will be discussed for use in drug discovery and drug evaluation phases of a drug’s development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. La Du, B. N., Mandel, H. G., and Way, E. L., eds. (1972) Fundamentals of Drug Metabolism and Drug Disposition. Williams & Wilkins, Baltimore.

    Google Scholar 

  2. Testa, B. and Jenner, P., eds. (1976) Drug Metabolism: Chemical and Biochemical Aspects. Marcel Dekker, New York.

    Google Scholar 

  3. Jenner, P. and Testa, B., eds. (1980–1981) Concepts in Drug Metabolism Parts A and B. Marcel Dekker, New York.

    Google Scholar 

  4. Parkinson, A. (1996) Biotransformation of xenobiotics, in Casarett & Doull’s Toxicology, (Klaassen, C. D., ed.), pp. 113–186.

    Google Scholar 

  5. Ortiz de Montellano, P. R., ed. (1995) Cytochrome P450: Structure, Mechanism and Biochemistry. Plenum, New York.

    Google Scholar 

  6. Omura, T. (1999) Forty years of cytochrome P450. Biochem. Biophys. Res. Commun. 266, 690–698.

    Article  PubMed  CAS  Google Scholar 

  7. Rendic, S. and Di Carlo, F. J. (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 29, 413–580.

    Article  PubMed  CAS  Google Scholar 

  8. Cashman, J. R. (2000) Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr. Drug Metab. 1, 181–191.

    Article  PubMed  CAS  Google Scholar 

  9. Mulder, G. J., ed. (1990) Conjugation Reactions in Drug Metabolism. Taylor & Francis, London.

    Google Scholar 

  10. Radominska-Pandya, A., Czernik, P. J., Little, J. M., Battaglia, and Mackenzie, E. (1999) Structural and functional studies of UDP-glucuronosyltransferase. Drug Metab. Rev. 31, 817–899.

    Article  PubMed  CAS  Google Scholar 

  11. King, C. D., Rios, G. R., Green, M. D., and Tephly, T. R. (2000) UDP-glucuronosyltransferases. Curr. Drug Metab. 1, 143–161.

    Article  PubMed  CAS  Google Scholar 

  12. Banoglu, E. (2000) Current status of the cytosolic sulfotransferases in the metabolic activation of promutagens and procarcinogens. Curr. Drug Metab. 1, 1–30.

    Article  PubMed  CAS  Google Scholar 

  13. Li, A. P. (2001) Screening for human ADME/Tox drug properties in drug discovery. DDT 6, 357–366.

    PubMed  CAS  Google Scholar 

  14. White, R. E. (2000) High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu. Rev. Pharmacol. Toxicol. 40, 133–157.

    Article  PubMed  CAS  Google Scholar 

  15. Uetrecht, J. P. (2000) Is it possible to more accurately predict which drug candidates will cause idiosyncratic drug reactions? Curr. Drug Metab. 1, 107–132.

    Article  Google Scholar 

  16. Wu, W. N. and McKown, L. A. (2000) Recent advances in biotransformation of cns and cardiovascular agents. Curr. Drug Metab. 1, 255–270.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, W. N., McKown, L. A., Yorgey, K. A., and Pritchard, J. F. (1999) In vitro metabolic products of RWJ-34130, an antiarrhythmic agent, in rat liver preparations. J. Pharm. Biomed. Anal. 20, 687–695.

    Article  PubMed  CAS  Google Scholar 

  18. McKown, L. A., Wu, W. N., and O’Neill, P. J. (1994) Characterization and identification of the metabolites of fenoctimine using in vitro drug metabolizing systems. J. Pharm. Biomed. Anal. 6, 771–775.

    Article  Google Scholar 

  19. Wu, W. N., McKown, L. A., and O’Neill, P. J. (1995) In vitro and in vivo metabolism of the antianxiolytic agent fenobam in the rat. J. Pharm. Sci. 84, 185–189.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, W. N., McKown, L. A., Moyer, M. D., Johannsen, T. B., and Takacs, A. R. (1999) In vitro metabolism of mifepristone (RU-486) in rat, monkey and human hepatic S9 fractions: identification of three new mifepristone metabolites. Xenobiotica 31, 1089–1100.

    Article  Google Scholar 

  21. Wu, W. N., McKown, L. A., Gauthier, A. D., Jones, W. J., and Raffa, R. B. (2001) Metabolism of the analgesic drug, tramadol hydrochloride, in rat and dog. Xenobiotica 31, 423–441.

    Article  PubMed  CAS  Google Scholar 

  22. Wu, W. N., McKown, L. A., and Liao, S. (2002) Metabolism of the analgesic drug, ULTRAM® (tramadol hydrochloride) in humans: api-ms and ms/ms characterization of metabolites. Xenobiotica 32, 411–425.

    Article  PubMed  CAS  Google Scholar 

  23. Yan, Z., Caldwell, G. W., Wu, W. N., McKown, L. A., Rafferty, B., Jones, W. J., et al. (2002) In vitro identification of metabolic pathways and cytochrome P450 enzymes involved in the metabolism of etoperidone. Xenobiotica 32, 949–962.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, W. N., McKown, L. A., and Reitz, A. B. (2001) In vitro metabolism of the anxiolytic agent, RWJ-52763 in human hepatic S9 fraction [abstract #243]. The 6th International ISSX Meeting. Drug Metab. Rev. 33, 122.

    Google Scholar 

  25. Wu, W. N., McKown, L. A., and Reitz, A. B. (2003) In vitro metabolism of the new anxiolytic agent, RWJ-52763 in human hepatic S9 fraction—api-ms/ms identification of metabolites. J. Pharm. Biomed. Anal. 31, 95–102.

    Article  PubMed  Google Scholar 

  26. Wu, W. N., McKown, L. A., and Rybczynski, P. J. (2000) In vitro metabolism of the endocrine agent, RWJ-68025, in rat and human hepatic S9 fraction [abstract #230]. The 10th North American ISSX Meeting. Drug Metab. Rev. 32, 251.

    Google Scholar 

  27. Wu, W. N., McKown, L. A., Rybczynski, P. J., and Demarest, K. (2003) Hepatic biotransformation of the new calcium-mimetic agent, RWJ-68025, in the rat and in man—api-ms/ms identification of metabolites. J. Pharm. Pharmacol. 55, 631–637.

    Article  PubMed  CAS  Google Scholar 

  28. Tang, C., Hochman, J. H., Ma, B., Subramanian, R., and Vyas, K. P. (2003) Acyl glucuronidation and glucosidation of a new and selective endothelin ETA receptor antagonist in human liver microsomes. Drug Metab. Dispos. 31, 37–45.

    Article  PubMed  CAS  Google Scholar 

  29. McKown, L. A., Wu, W. N., and Pritchard, J. F. (1992) In vitro metabolism of McN-4130 (RWJ-34130) in the rat [abstract]. Presented at the AAPS Eastern Regional Meeting.

    Google Scholar 

  30. Wu, W. N., Masucci, J. A., Caldwell, G. W., and Carson, J. R. (1998) Excretion and metabolism of the antihypertensive agent, RWJ-26240 (McN-5691) in dogs. Drug Metab. Dispos. 26, 115–125.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wu, WN., McKown, L.A. (2004). In Vitro Drug Metabolite Profiling Using Hepatic S9 and Human Liver Microsomes. In: Yan, Z., Caldwell, G.W. (eds) Optimization in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-800-5:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-800-5:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-332-9

  • Online ISBN: 978-1-59259-800-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics