Skip to main content

Covalent and Noncovalent Labeling Schemes for Near-Infrared Dyes in Capillary Electrophoresis Protein Applications

  • Protocol
  • 752 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 276))

Abstract

Capillary electrophoresis (CE) is experiencing increased use in the field of separation science. Part of its growing popularity of capillary electrophoresis can be attributed to the high efficiency of the separations achievable with the technique, making it an attractive tool for bioanalytical applications. Laser-induced fluorescence (LIF) is a common detection method for CE. One of the problems frequently experienced when using visible LIF detection is matrix autofluorescence which has the effect of degrading the overall sensitivity of the technique. However, the use of near-infrared (NIR) laser induced fluorescence nearly eliminates matrix autofluorescence, as very few molecules have intrinsic fluorescence in this region. This chapter describes the use of covalent and noncovalent labeling schemes for tagging biomolecules with near infrared dyes. To fully appreciate the advantages that the NIR LIF technique can supply, we also review applications that employ detection schemes other than NIR LIF. Specific applications to be discussed include drug-protein studies by CE, as well as capillary electrophoretic immunoassays.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Swartz, M. E. (1993) Capillary electrophoretic determination of inorganic ions in a prenatal vitamin formulation. J. Chromatogr. 640, 441–444.

    Article  CAS  Google Scholar 

  2. Schwartz, H. E., Ulfelder, J. K., Chen, F. A., and Pentoney, S. L. (1994) The utility of laser-induced fluorescence detection in applications of capillary electrophoresis. J. Capil. Electorophor. 1, 36–54.

    CAS  Google Scholar 

  3. Gegendre, B. L., Williams, D. C., Soper, S. A., Erdmann, R., Ortmann, U., and Enderlein, J. (1996) An all solid-state near-infrared time-correlated single photon counting instrument for dynamic lifetime measurements in DNA sequencing applications. Rev. Sci. Instrum. 67, 3984–3989.

    Article  Google Scholar 

  4. Cheng, Y. F. and Dovichi, N. J. (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science 242, 562–564.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, Y. H., Maus, R. G., Smith, B. W., and Winefordner, J. D. (1994) Laser-induced fluorescence detection of a single molecule in a capillary. Anal. Chem. 66, 4142–4149.

    Article  CAS  Google Scholar 

  6. Hillebrand, S., Schoffen, J. R., Mandaji, M., et al. (2002) Performance of an ultraviolet light-emitting diode-induced fluorescence detector in capillary electrophoresis. Electrophor. 23, 2445–2448.

    Article  CAS  Google Scholar 

  7. Kist, T. B. L., Termignoni, C., and Grieneisen, H.-P. H. (1994) Capillary zone electrophoresis separation of kinins using a novel laser fluorescence detector. Braz. J. Med. Biol. Res. 27, 11–19.

    PubMed  CAS  Google Scholar 

  8. Vicki, L., Ward, M., and Khaledi, G. (1998) Nonaqueous capillary electrophoresis with laser induced fluorescence detection. J. Chromatogr. B 718, 15–22.

    Article  Google Scholar 

  9. Lackowicz, J. R. (1999) Principles of Fluorescent Spectroscopy. Kluwer Academic, New York.

    Google Scholar 

  10. Ingle, J. D. and Crouch, S. R. (1998) Spectrochemical Analysis. Prentice-Hall, Upper Saddle River, NJ, ch. 12.

    Google Scholar 

  11. Davis, G. A. (1972) Dansylglycine as a fluorescent probe for aqueous solutions of cationic detergents. J. Am. Chem. Soc. 94, 5089–5090.

    Article  CAS  Google Scholar 

  12. Hinze, W. L. (1979) Solution Chemistry of Surfactants. Plenum, New York.

    Google Scholar 

  13. Legendre, B. L., Dixie, L., Moberg, D. C., and Soper S. A. (1997) Ultrasensitive near-infrared laser-induced fluorescence detection in capillary electrophoresis using a diode laser and avalanche photodiode. J. Chromatogr. A 779, 185–194.

    Article  PubMed  CAS  Google Scholar 

  14. Ummadi, M. and Weimer B. C. (2002) Use of capillary electrophoresis and laser-induced fluorescence for attomole detection of amino acids. J. Chromatogr. A 964, 243–253.

    Article  PubMed  CAS  Google Scholar 

  15. Berquist, J., Vona, M. J., Stiller, C.-O., and O’Connor, W. T. (1996) Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter. J. Neurosci. Methods 65, 33–42.

    Article  Google Scholar 

  16. Strickland, M., Weimer, B. C., and Broadbent, J. R. (1996) Capillary electrophoresis of Cheddar cheese. J. Chromatogr. A 731, 305–313.

    Article  CAS  Google Scholar 

  17. Johansson, T., Petersson, M., Johanssons, J., and Nilsson, S. (1999) Real-time imaging through optical fiber array-assisted laser-induced fluorescence of capillary electrophoretic enantiomer separations. Anal. Chem. 71, 4190–4197.

    Article  CAS  Google Scholar 

  18. Ward, T. J., Nichols, M., Sturdivant, L., and King, C. C. (1995) Use of organic modifiers to enhance chiral selectivity in capillary electrophoresis. Amino Acids 8, 337–344.

    Article  CAS  Google Scholar 

  19. Tyutyulkov, N., Fabian, J., Mehlhorn, A., Dietz, F., and Tadjer, A. (1991) Polymethine Dyes: Structure and Properties. St. Kliment Ohridski University Press, Sofia, Bulgaria.

    Google Scholar 

  20. Hamer, F. M. (1964) The Cyanine Dyes and Related Compounds. Wiley, New York.

    Google Scholar 

  21. Dachne, S., Resch-Genger, U., and Wolfbeis, O. S. (1998) Near Infrared Dyes for High Technology Applications, NATO ASI series. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  22. Peters, A. T. and Freedman, H. S. (1995) Modern Colorants: Synthesis and Structure. Blackie Academic and Professional, Glasgow, UK.

    Google Scholar 

  23. Fabian, J., Nakazumi, H., and Matsuoka, M. (1992) Near-infrared absorbing dyes. Chem. Rev. 92, 1197–1226.

    Article  CAS  Google Scholar 

  24. Katritzky, A. R. and Sabongi, G. J. (eds.) (1990) Infrared Absorbing Dyes. Plenum, New York.

    Google Scholar 

  25. Rao, T. V. S., Huff, J. B., and Bieniarz, C. (1998) Supramolecular control of photophysical properties of cyanine dyes. Tetrahedron 54, 10,627–10,634.

    Article  CAS  Google Scholar 

  26. Lipowska, M., Patonay, G., and Strekowski, L. (1993) New near-infrared cyanine dyes for labeling of proteins. Synth. Commun. 23, 3087–3094.

    Article  CAS  Google Scholar 

  27. Strekowski, L., Lipowska, M., and Patonay, G. (1992) Facile derivatizations of heptamethine cyanine dyes. Synth. Commun. 22, 2593–2598.

    Article  CAS  Google Scholar 

  28. Strekowski, L., Lipowska, M., and Patonay, G. (1992) Substitution reactions of a nucleofugal group in heptamethine cyanine dyes. Synthesis of an isothiocyanato derivative for labeling of proteins with a near-infrared chromophore. J. Org. Chem. 57, 4578–4580.

    Article  CAS  Google Scholar 

  29. Lipowska, M., Patonay, G., and Strekowski, L. (1995) A novel near-infrared cyanine dye for bioanalytical applications. Heterocycl. Commun. 1, 427–430.

    CAS  Google Scholar 

  30. Flannagan, J. H., Khan, S. H., Menchen, S., Soper, S. A., and Hammer, R. P. (1997) Functionalized tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate Chem. 8, 751–756.

    Article  Google Scholar 

  31. Strekowski, L., Mason, C., Lee, H., and Patonay, G. Synthesis of water-soluble near-infrared cyanine dyes functionalized with [(Succuinimido)oxy]carbonyl group. Heterocycl. Commun., in press

    Google Scholar 

  32. Strekowski, L., Mason, C., Lee, H., et al. Synthesis of a functionalized cyanine dye for covalent labeling of biomolecules with a pH-sensitive chromophore. J. Heterocycl. Chem., in press.

    Google Scholar 

  33. Strekowski, L., Gorecki, T., Mason, J., Lee, H., and Patonay, G. (2001) New heptamethine cyanine reagents for labeling of biomolecules with a near-infrared chromophore. Heterocycl. Commun. 7, 117–122.

    CAS  Google Scholar 

  34. Strekowski, L., Lipowska, M., Gorecki, T., Mason, C., and Patonay, G. (1996) Functionalization of near-infrared cyanine dyes. J. Heterocyclic Chem. 33, 1685–1688.

    Article  CAS  Google Scholar 

  35. Ernst, L. A., Gupta, R. K., Mujumdar, R. B., and Waggoner, A. S. (1989) Cyanine dye labeling reagents for sulfhydryl groups. Cytometry 10, 3–10.

    Article  PubMed  CAS  Google Scholar 

  36. Gruber, H., Kada, G., Pragl, B., et al. (2000) Preparation of thiol-reactive Cy5 derivatives from commercial Cy5 succinimidyl ester. Bioconj. Chem. 11, 161–166.

    Article  CAS  Google Scholar 

  37. Retoff, S. and Larsen, P. R. (1989) Endorcrinology, Vol. 1. Saunders, Philadelphia, PA.

    Google Scholar 

  38. Westphal, U. (1971) Steroid Protein Interactions. Springer-Verlag, New York.

    Google Scholar 

  39. Kwong, T. C. (1985) Free drug measurements: methodologies and clinical significance. Clin. Chim. Acta 151, 193–216.

    Article  PubMed  CAS  Google Scholar 

  40. Svennson, C. K., Woodruff, M. N. Baker J. G., and Lalka, D. (1986) Free drug concentration monitoring in clinical practice. Rational and current status. Clin. Pharmacokin. 11, 450–469.

    Article  Google Scholar 

  41. Barre, J., Didey, F., Delion, F., and Tellerment, J. P. (1998) Problems in therapeutic drug monitoring. Ther. Drug Monit. 10, 133–143.

    Article  Google Scholar 

  42. Levy, R. H. and Schmidt, D. (1985) Utility of free level monitoring of antiepileptic drugs. Epilepsia 26,199–205.

    Article  PubMed  CAS  Google Scholar 

  43. Craig, D. B., and Dovichi, N. J. (1998) Multiple labeling of proteins. Anal. Chem. 70, 2493–2494.

    Article  CAS  Google Scholar 

  44. Bao, J. J. (1997) Capillary electrophoretic immunoassays. J. Chromatogr. B 699, 463–480.

    Article  CAS  Google Scholar 

  45. Chen, F. T.-A. and Pentoney, J. (1994) Characterization of digoxigenin—labeled B phycoerythrin by capillary electrophoresis with laser induced fluorescence detection. Application to homogenous digoxin immunoassay. J. Chromatogr. 680, 425–450.

    Article  CAS  Google Scholar 

  46. Schultz, N. M. and Kennedy, R. T. (1993) Rapid immunoassay using capillary electrophoresis with fluorescence detection. Anal. Chem. 65, 3161–3165.

    Article  CAS  Google Scholar 

  47. Tao, L. and Kennedy, R. T. (1996) On line competitive immunoassay for insulin based on capillary electrophoresis with laser induced fluorescence detection. Anal. Chem. 68, 3899–3906.

    Article  PubMed  CAS  Google Scholar 

  48. Towns, J., Bao, J., and Reigner, F. E. (1992) Synthesis and evaluation of epoxy polymer coatings for the analysis of proteins by capillary zone electrophoresis. J. Chromatogr. 599, 227–237.

    Article  CAS  Google Scholar 

  49. Xue, Q. and Yeung, E. S. (1995) Differences in chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683.

    Article  PubMed  CAS  Google Scholar 

  50. Legendre, B. L. and Soper S. A. (1996) Binding properties of near IR dyes to proteins and the separation of the dye/protein complexes using capillary electrophoresis with laser induced fluorescence detection. Appl. Spectrosc. 50, 1196.

    Article  CAS  Google Scholar 

  51. Peters, T. (1996) All About Albumin: Biochemistry, Genetics and Medical Applications. Academic, San Diego, CA.

    Google Scholar 

  52. Sauda, K., Imasaka, T., and Ishibashi, N. (1986) Determination of protein in human serum by high performance liquid chromatography with semiconductor laser fluorometric detection. Anal. Chem. 58, 2649–2653.

    Article  PubMed  CAS  Google Scholar 

  53. Hage, D. S., Noctor, T. A., and Wainer, I. W. (1995) Characterization of the protein binding of chiral drugs by high performance affinity chromatography, interactions of R-and S-ibuprofen with human serum albumin. J. Chromatogr. A 693, 23–32.

    Article  PubMed  CAS  Google Scholar 

  54. Boga, O. and Borga, B. (1997) Serum protein binding of nonsteroidal anti-inflammatory drugs: a comparative study. J. Pharmacokinet. Biopharm. 25, 63–77.

    Article  Google Scholar 

  55. Sakai, T., Maruyama, T., Sako, T., et al. (1999) Stereoselective serum protein binding of ketoprofen in liver diseases. Enantiomer 4, 477–482.

    PubMed  CAS  Google Scholar 

  56. Sowell, J., Agnew-Heard, K., Mason, J. Ch., Mama, Ch., Strekowski, L., and Patonay, G. (2001) Use of noncovalent labeling in illustrating ligand binding to human serum albumin via affinity capillary electrophoresis with near-infrared laser induced fluorescence detection. J Chromatogr. B 755, 91–99.

    Article  CAS  Google Scholar 

  57. Sowell, J., Mason, J. Ch., Strekowski, L., and Patonay, G. (2001) Binding constant determination of drugs toward subdomain IIIA of human serum albumin by near-displacement capillary electrophoresis. Electrophoresis 22, 2512–2517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Sowell, J., Salon, J., Strekowski, L., Patonay, G. (2004). Covalent and Noncovalent Labeling Schemes for Near-Infrared Dyes in Capillary Electrophoresis Protein Applications. In: Strege, M.A., Lagu, A.L. (eds) Capillary Electrophoresis of Proteins and Peptides. Methods in Molecular Biology™, vol 276. Humana Press. https://doi.org/10.1385/1-59259-798-X:039

Download citation

  • DOI: https://doi.org/10.1385/1-59259-798-X:039

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-017-5

  • Online ISBN: 978-1-59259-798-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics