Skip to main content

Expressed Sequence Tags

Analysis and Annotation

  • Protocol
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 270))

Abstract

Expressed sequence tags (ESTs) present a special set of problems for bioinformatic analysis. They are partial and error-prone, and large datasets can have significant internal redundancy. To facilitate analysis of small EST datasets from in-house projects, we present an integrated “pipeline” of tools that take EST data from sequence trace to database submission. These tools also can be used to provide clustering of ESTs into putative genes and to annotate these genes with preliminary sequence similarity searches. The systems are written to use the public-domain LINUX environment and other openly available analytical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M. D., Kelley, J. M., Gocayne, J. D., et al. (1991) Complementary DNA sequencing: expressed sequence tags and the human genome project. Science 252, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  2. McCombie, W. R., Adams, M. D., Kelley, J. M., et al. (1992) Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nat. Genet. 1, 124–131.

    Article  PubMed  CAS  Google Scholar 

  3. El-Sayed, N. M., Alarcon, C. M., Beck, J. C., et al. (1995) cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol. Biochem. Parasitol. 73, 75–90.

    Article  PubMed  CAS  Google Scholar 

  4. Wan, K.-L., Blackwell, J. M., and Ajioka, J. W. (1995) Toxoplasma gondii expressed sequence tags: insight into tachyzoite gene expression. Mol. Biochem. Parasitol. 75, 179–186.

    Article  Google Scholar 

  5. Blaxter, M. L., Raghavan, N., Ghosh, I., et al. (1996) Genes expressed in Brugia malayi infective third stage larvae. Mol. Biochem. Parasitol. 77, 77–96.

    Article  PubMed  CAS  Google Scholar 

  6. Ivens, A. C. and Blackwell, J. M. (1996) Unravelling the Leishmania genome. Curr. Opin. Genet. Dev. 6, 704–710.

    Article  PubMed  CAS  Google Scholar 

  7. Levick, M. P., Blackwell, J. M., Connor, V., et al. (1996) An expressed sequence tag analysis of a full length, spliced-leader cDNA library from Leishmania major promastigotes. Mol. Biochem. Parasitol. 76, 345–348.

    Article  PubMed  CAS  Google Scholar 

  8. Ajioka, J. W., Boothroyd, J. C., Brunk, B. P., et al. (1998) Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res. 8, 18–28.

    PubMed  CAS  Google Scholar 

  9. Djikeng, A., Agufa, C., Donelson, J. E., et al. (1998) Generation of expressed sequence tags as physical landmarks in the genome of Trypanosoma brucei. Gene 221, 93–106.

    Article  PubMed  CAS  Google Scholar 

  10. Manger, I. D., Hehl, A., Parmley, S., et al. (1998) Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect. Immun. 66, 1632–1637.

    PubMed  CAS  Google Scholar 

  11. Verdun, R. E., Di Paolo, N., Urmenyi, T. P., et al. (1998) Gene discovery through expressed sequence tag sequencing in Trypanosoma cruzi. Infect. Immun. 66, 5393–5398.

    PubMed  CAS  Google Scholar 

  12. Ivens, A. C. and Blackwell, J. M. (1999) The Leishmania genome comes of age. Parasitol. Today 15, 225–231.

    Article  PubMed  CAS  Google Scholar 

  13. Johnston, D. A., Blaxter, M. L., Degrave, W. M., et al. (1999) Genomics and the biology of parasites. BioEssays 21, 131–147.

    Article  PubMed  CAS  Google Scholar 

  14. Santos, T. M., Johnston, D. A., Azevedo, V., et al. (1999) Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Mol. Biochem. Parasitol. 103, 79–97.

    Article  PubMed  CAS  Google Scholar 

  15. Urmenyi, T. P., Bonaldo, M. F., Soares, M. B., et al. (1999) Construction of a normalized cDNA library for the Trypanosoma cruzi genome project. J. Eukaryot. Microbiol. 46, 542–544.

    Article  PubMed  CAS  Google Scholar 

  16. Williams, S. A. and Johnston, D. A. (1999) Helminth genome analysis: the current status of the filarial and schistosome genome projects. Filarial Genome Project. Schistosome Genome Project. Parasitology 118, S19–S38.

    Article  PubMed  CAS  Google Scholar 

  17. Daub, J., Loukas, A., Pritchard, D. I., et al. (2000) A survey of genes expressed in adults of the human hookworm, Necator americanus. Parasitology 120, 171–184.

    Article  PubMed  CAS  Google Scholar 

  18. McCarter, J. P., Abad, J., Jones, J. T., et al. (2000) Rapid gene discovery in plant parasitic nematodes via expressed sequence tags. Nematology 2, 719–731.

    Article  CAS  Google Scholar 

  19. Williams, S. A., Lizotte-Waniewski, M. R., Foster, J., et al. (2000) The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int. J. Parasitol. 30, 411–419.

    Article  PubMed  CAS  Google Scholar 

  20. Degrave, W. M., Melville, S., Ivens, A., et al. (2001) Parasite genome initiatives. Int. J. Parasitol. 31, 532–536.

    Article  PubMed  CAS  Google Scholar 

  21. Parkinson, J., Whitton, C., Guiliano, D., et al. (2001) 200,000 nematode ESTs on the net. Trends Parasitol. 17, 394–396.

    Article  PubMed  CAS  Google Scholar 

  22. McCarter, J. P., Clifton, S. W., Bird, D. M., et al. (2002) Nematode gene sequences, Update for June 2002. J. Nematol. 34, 71–74.

    PubMed  Google Scholar 

  23. Parkinson, J., Guiliano, D., and Blaxter, M. (2002) Making sense of EST sequences by CLOBBing them. BMC Bioinf. 3, 31.

    Article  Google Scholar 

  24. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    CAS  Google Scholar 

  25. Ewing, B., Hillier, L., Wendl, M. C., et al. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  26. Altschul, S. F., Gish, W., Miller, W., et al. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  27. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  28. Boguski, M. S., Lowe, T. M., and Tolstoshev, C. M. (1993) dbEST—database for “expressed sequence tags.” Nat. Genet. 4, 332–333.

    Article  PubMed  CAS  Google Scholar 

  29. Christoffels, A., van Gelder, A., Greyling, G., et al. (2001) STACK: Sequence Tag Alignment and Consensus Knowledgebase. Nucleic Acids Res. 29, 234–238.

    Article  PubMed  CAS  Google Scholar 

  30. Parsons, J. D., Brenner, S., and Bishop, M. J. (1992) Clustering cDNA sequences. Comput. Appl. Biosci. 8, 461–466.

    PubMed  CAS  Google Scholar 

  31. Parsons, J. D. (1995) Improved tools for DNA comparison and clustering. Comput. Appl. Biosci. 11, 603–613.

    PubMed  CAS  Google Scholar 

  32. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  33. Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9, 868–877.

    Article  PubMed  CAS  Google Scholar 

  34. Parkinson, J. and Blaxter, M. L. (2002) SimiTri—visualising similarity relationships for large groups of sequences. Bioinformatics 19, 390–395.

    Article  Google Scholar 

  35. Iseli, C., Jongeneel, C. V., and Bucher, P. (1999) in Proc. Int. Conf. Intell. Syst. Mol. Biol., 138–148.

    Google Scholar 

  36. Fukunishi, Y. and Hayashizaki, Y. (2001) Amino acid translation program for full-length cDNA sequences with frameshift errors. Physiol. Genomics 5, 81–87.

    PubMed  CAS  Google Scholar 

  37. Hatzigeorgiou, A. G., Fiziev, P., and Reczko, M. (2001) DIANA-EST: a statistical analysis. Bioinformatics 17, 913–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa,NJ

About this protocol

Cite this protocol

Parkinson, J., Blaxter, M. (2004). Expressed Sequence Tags. In: Melville, S.E. (eds) Parasite Genomics Protocols. Methods in Molecular Biology™, vol 270. Humana Press. https://doi.org/10.1385/1-59259-793-9:093

Download citation

  • DOI: https://doi.org/10.1385/1-59259-793-9:093

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-062-5

  • Online ISBN: 978-1-59259-793-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics