Skip to main content

Vaccinia Virus as a Tool for Immunologic Studies

  • Protocol
Vaccinia Virus and Poxvirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 269))

  • 1512 Accesses

Abstract

Studies that involve antigen processing and presentation often require de novo biosynthesis of the antigen both in vitro and in vivo. Additionally, biosynthesis of the antigen or engineered variants within the antigen-presenting cells is usually simpler than providing purified recombinant proteins from bacteria, yeast, or insect cells. For these purposes, recombinant vaccinia virus-based expression has several advantages over other expression systems employed in the field. Insertion of large pieces of recombinant DNA into the vaccinia virus genome, easy recombination and selection of vaccinia viruses, and the ability of these viruses to infect a variety of cells are some key aspects that have made this system popular. Although their efficacy is proven in studies of major histocompatibility complex (MHC) class I-restricted antigen processing and presentation, it is challenging to use them in MHC class II-restricted antigen processing and presentation owing to many reasons specified in this chapter. This chapter aims to describe the commonly used procedures in this field that employ vaccinia virus systems, particularly troubleshooting common problems encountered during experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennink, J. R., Yewdell, J. W., Smith, G. L., Moller, C., and Moss, B. (1984) Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311, 578–579.

    Article  PubMed  CAS  Google Scholar 

  2. Moss, B. (1991) Vaccinia virus: a tool for research and vaccine development. Science 252, 1662–1667.

    Article  PubMed  CAS  Google Scholar 

  3. Jaraquemada, D., Marti, M., and Long, E. O. (1990) An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. J. Exp. Med. 172, 947–954.

    Article  PubMed  CAS  Google Scholar 

  4. Yewdell, J. W., Anderson, R., Cox, J. H., Eisenlohr, L. C., Esquivel, F., Lapham, C., et al. (1993) Multiple uses of viruses for studying antigen processing. Semin. Virol. 4, 109–116.

    Article  Google Scholar 

  5. Morrison, L. A., Lukacher, A. E., Braciale, V. L., Fan, D. P., and Braciale, T. J. (1986) Differences in antigen presentation to MHC class I-and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J. Exp. Med. 163, 903–921.

    Article  PubMed  CAS  Google Scholar 

  6. Weir, J. P. and Moss, B. (1984) Regulation of expression and nucleotide sequence of a late vaccinia virus gene. J. Virol. 51, 662–669.

    PubMed  CAS  Google Scholar 

  7. Davison, A. J. and Moss, B. (1989) Structure of vaccinia virus late promoters. J. Mol. Biol. 210, 771–784.

    Article  PubMed  CAS  Google Scholar 

  8. Davison, A. J. and Moss, B. (1989) Structure of vaccinia virus early promoters. J. Mol. Biol. 210, 749–769.

    Article  PubMed  CAS  Google Scholar 

  9. Moss, B. (1990) Regulation of vaccinia virus transcription. Annu. Rev. Biochem. 59, 661–688.

    Article  PubMed  CAS  Google Scholar 

  10. Golovina, T. N., Wherry, E. J., Bullock, T. N., and Eisenlohr, L. C. (2002) Efficient and qualitatively distinct MHC class I-restricted presentation of antigen targeted to the endoplasmic reticulum. J. Immunol. 168, 2667–2675.

    PubMed  CAS  Google Scholar 

  11. Carroll, M. W. and Moss, B. (1997) Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–211.

    Article  PubMed  CAS  Google Scholar 

  12. Owen, J. A., Allouche, M., and Doherty, P. C. (1982) Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell Immunol. 67, 49–59.

    Article  PubMed  CAS  Google Scholar 

  13. Moskophidis, D., Assmann-Wischer, U., Simon, M. M., and Lehmann-Grube, F. (1987) The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. Eur. J. Immunol. 17, 937–942.

    Article  PubMed  CAS  Google Scholar 

  14. Miyahira, Y., Murata, K., Rodriguez, D., Rodriguez, J. R., Esteban, M., Rodrigues, M. M., and Zavala, F. (1995) Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J. Immunol. Methods 181, 45–54.

    Article  PubMed  CAS  Google Scholar 

  15. Altman, J. D., Moss, P. A., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96.

    Article  PubMed  CAS  Google Scholar 

  16. Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., et al. (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187.

    Article  PubMed  CAS  Google Scholar 

  17. Butz, E. A. and Bevan, M. J. (1998) Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175.

    Article  PubMed  CAS  Google Scholar 

  18. Doherty, P. C. (1998) The numbers game for virus-specific CD8+ T cells. Science 280, 227.

    Article  PubMed  CAS  Google Scholar 

  19. Taswell, C. (1981) Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J. Immunol. 126, 1614–1619.

    PubMed  CAS  Google Scholar 

  20. Gallimore, A., Glithero, A., Godkin, A., Tissot, A. C., Pluckthun, A., Elliott, T., et al. (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393.

    Article  PubMed  CAS  Google Scholar 

  21. Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive, D. J., Suresh, M., Altman, J. D., and Ahmed, R. (1998) Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213.

    Article  PubMed  CAS  Google Scholar 

  22. Jin, Y., Shih, W. K., and Berkower, I. (1988) Human T cell response to the surface antigen of hepatitis B virus (HBsAg). Endosomal and nonendosomal processing pathways are accessible to both endogenous and exogenous antigen. J. Exp. Med. 168, 293–306.

    Article  PubMed  CAS  Google Scholar 

  23. Tsung, K., Yim, J. H., Marti, W., Buller, R. M., and Norton, J. A. (1996) Gene expression and cytopathic effect of vaccinia virus inactivated by psoralen and long-wave UV light. J. Virol. 70, 165–171.

    PubMed  CAS  Google Scholar 

  24. Sanderson, S. and Shastri, N. (1994). LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6, 369–376.

    Article  PubMed  CAS  Google Scholar 

  25. Earl, P. L. and Moss, B. (1993) Purification of vaccinia virus (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl., ed.), Greene and Wiley-Interscience, New York.

    Google Scholar 

  26. Wu, T. C., Guarnieri, F. G., Staveley-O’Carroll, K. F., Viscidi, R. P., Levitsky, H. I., Hedrick, L., et al. (1995) Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc. Natl. Acad. Sci. USA 92, 11671–11675.

    Article  PubMed  CAS  Google Scholar 

  27. Sanderson, S., Frauwirth, K., and Shastri, N. (1995) Expression of endogenous peptide-major histocompatibility complex class II complexes derived from invariant chain-antigen fusion proteins. Proc. Natl. Acad. Sci. USA 92, 7217–7221.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandes, D. M., Vidard, L., and Rock, K. L. (2000) Characterization of MHC class II-presented peptides generated from an antigen targeted to different endocytic compartments. Eur. J. Immunol. 30, 2333–2343.

    Article  PubMed  CAS  Google Scholar 

  29. Roberts, T. J., Sriram, V., Spence, P. M., Gui, M., Hayakawa, K., Bacik, I., et al. (2002) Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168, 5409–5414.

    PubMed  CAS  Google Scholar 

  30. Williams, N. S. and Engelhard, V. H. (1996) Identification of a population of CD4+ CTL that utilizes a perforin-rather than a Fas ligand-dependent cytotoxic mechanism. J. Immunol. 156, 153–159.

    PubMed  CAS  Google Scholar 

  31. Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L., and Moss, B. (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813–815.

    Article  PubMed  CAS  Google Scholar 

  32. Yewdell, J. W. and Bennink, J. R. (1989) Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science 244, 1072–1075.

    Article  PubMed  CAS  Google Scholar 

  33. Wherry, E. J., Puorro, K. A., Porgador, A., and Eisenlohr, L. C. (1999) The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 163, 3735–3745.

    PubMed  CAS  Google Scholar 

  34. Wherry, E. J., McElhaugh, M. J., and Eisenlohr, L. C. (2002) Generation of CD8(+) T cell memory in response to low, high, and excessive levels of epitope. J. Immunol. 168, 4455–4461.

    PubMed  CAS  Google Scholar 

  35. Picker, L. J., Singh, M. K., Zdraveski, Z., Treer, J. R., Waldrop, S. L., Bergstresser, P. R., and Maino, V. C. (1995) Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86, 1408–1419.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tatsis, N., Sinnathamby, G., Eisenlohr, L.C. (2004). Vaccinia Virus as a Tool for Immunologic Studies. In: Isaacs, S.N. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 269. Humana Press. https://doi.org/10.1385/1-59259-789-0:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-789-0:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-229-2

  • Online ISBN: 978-1-59259-789-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics