Skip to main content

Studying the Binding and Entry of the Intracellular and Extracellular Enveloped Forms of Vaccinia Virus

  • Protocol
Vaccinia Virus and Poxvirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 269))

Abstract

This chapter describes the methods for the study of binding and entry of the two different forms of vaccinia virus (VV)—the intracellular mature virus (IMV) and extracellular enveloped virus (EEV)—using immunofluorescent staining and confocal microscopy. After binding to or penetration of the cells, IMV, EEV, and virus cores are distinguished by different antibodies. Bound virus or penetrated cores are visualized and recorded by confocal microscopy and can be accurately counted. Although specific antibodies to IMV, EEV, and virus cores are required, this method is highly quantitative and also allows the recognition of virus aggregates, which would not be possible using other techniques, such as flow cytometry and radiolabeling of virus particles. Furthermore, this method bypasses the need for EEV purification that may damage the EEV membrane and release an IMV particle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G. L., Vanderplasschen, A., and Law, M. (2002) The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83, 2915–2931.

    PubMed  CAS  Google Scholar 

  2. McIntosh, A. A. and Smith, G. L. (1996) Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70, 272–281.

    PubMed  CAS  Google Scholar 

  3. Ichihashi, Y. (1996) Extracellular enveloped vaccinia virus escapes neutralization. Virology 217, 478–485.

    Article  PubMed  CAS  Google Scholar 

  4. Wolffe, E. J., Katz, E., Weisberg, A., and Moss, B. (1997) The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 71, 3904–3915.

    PubMed  CAS  Google Scholar 

  5. Vanderplasschen, A. and Smith, G. L. (1997) A novel virus binding assay using confocal microscopy: demonstration that the intracellular and extracellular vaccinia virions bind to different cellular receptors. J. Virol. 71, 4032–4041.

    PubMed  CAS  Google Scholar 

  6. Postlethwaite, R. (1960) A plaque technique for the titration of vaccinia virus in chick embryo cells and some features of vaccinial infection in this system. Virology 10, 466–482.

    Article  PubMed  CAS  Google Scholar 

  7. Payne, L. G. and Norrby, E. (1978) Adsorption and penetration of enveloped and naked vaccinia virus particles. J. Virol. 27, 19–27.

    PubMed  CAS  Google Scholar 

  8. Dales, S. (1962) An electron microscope study of the early association between two mammalian viruses and their hosts. J. Cell Biol. 13, 303–321.

    Article  PubMed  CAS  Google Scholar 

  9. Granados, R. R. (1973) Entry of an insect poxvirus by fusion of the virus envelope with the host cell membrane. Virology 52, 305–309.

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong, J. A., Metz, D. H., and Young, M. R. (1973) The mode of entry of vaccinia virus into L cells. J. Gen. Virol. 21, 533–537.

    Article  PubMed  CAS  Google Scholar 

  11. Chang, A. and Metz, D. H. (1976) Further investigations on the mode of entry of vaccinia virus into cells. J. Gen. Virol. 32, 275–282.

    Article  PubMed  CAS  Google Scholar 

  12. Krijnse-Locker, J., Kuehn, A., Schleich, S., Rutter, G., Hohenberg, H., Wepf, R., and Griffiths, G. (2000) Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling-dependent for the IMV but not the EEV. Mol. Biol. Cell. 11, 2497–2511.

    Google Scholar 

  13. Hügin, A. W. and Hauser, C. (1994) The epidermal growth factor receptor is not a receptor for vaccinia virus. J. Virol. 68, 8409–8412.

    PubMed  Google Scholar 

  14. Vanderplasschen, A., Hollinshead, M., and Smith, G. L. (1998) Intracellular and extracellular vaccinia virions enter cells by different mechanisms. J. Gen. Virol. 79, 877–887.

    PubMed  CAS  Google Scholar 

  15. Allison, A. C. and Valentine, R. C. (1960) Virus particle adsorption III. Adsorption of viruses by cell monolayers and effects of some variables on adsorption. Biochim. Biophys. Acta 40, 400–410.

    Article  PubMed  CAS  Google Scholar 

  16. Janeczko, R. A., Rodriguez, J. F., and Esteban, M. (1987) Studies on the mechanism of entry of vaccinia virus in animal cells. Arch. Virol. 92, 135–150.

    Article  PubMed  CAS  Google Scholar 

  17. Doms, R. W., Blumenthal, R., and Moss, B. (1990) Fusion of intra-and extracellular forms of vaccinia virus with the cell membrane. J. Virol. 64, 4884–4892.

    PubMed  CAS  Google Scholar 

  18. Rodriguez, D., Rodriguez, J. R., Ojakian, G. K., and Esteban, M. (1991) Vaccinia virus preferentially enters polarized epithelial cells through the basolateral surface. J. Virol. 65, 494–498.

    PubMed  CAS  Google Scholar 

  19. Lai, C. F., Gong, S. C., and Esteban, M. (1991) The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces. J. Virol. 65, 499–504.

    PubMed  CAS  Google Scholar 

  20. Chang, W., Hsiao, J. C., Chung, C. S., and Bair, C. H. (1995) Isolation of a monoclonal antibody which blocks vaccinia virus infection. J. Virol. 69, 517–522.

    PubMed  CAS  Google Scholar 

  21. Chung, C. S., Hsiao, J. C., Chang, Y. S., and Chang, W. (1998) A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 72, 1577–1585.

    PubMed  CAS  Google Scholar 

  22. Hsiao, J. C., Chung, C. S., and Chang, W. (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 73, 8750–8761.

    PubMed  CAS  Google Scholar 

  23. Lalani, A. S., Masters, J., Zeng, W., Barrett, J., Pannu, R., Everett, H., Arendt, C. W., and McFadden, G. (1999) Use of chemokine receptors by poxviruses. Science 286, 1968–1971.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, C. L., Chung, C. S., Heine, H. G., and Chang, W. (2000) Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 74, 3353–3365.

    Article  PubMed  CAS  Google Scholar 

  25. Rodger, G. and Smith, G. L. (2002) Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J. Gen. Virol. 83, 323–332.

    PubMed  CAS  Google Scholar 

  26. Geada, M. M., Galindo, I., Lorenzo, M. M., Perdiguero, B., and Blasco, R. (2001) Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J. Gen. Virol. 82, 2747–2760.

    PubMed  CAS  Google Scholar 

  27. Ward, B. M. and Moss, B. (2001) Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75, 11651–11663.

    Article  PubMed  CAS  Google Scholar 

  28. Vanderplasschen, A. and Smith, G. L. (1999) Using confocal microscopy to study virus binding and entry into cells. Methods Enzymol. 307, 591–607.

    Article  PubMed  CAS  Google Scholar 

  29. Law, M. and Smith, G. L. (2001) Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280, 132–142.

    Article  PubMed  CAS  Google Scholar 

  30. Czerny, C. P. and Mahnel, H. (1990) Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibodies. J. Gen. Virol. 71, 2341–2352.

    Article  PubMed  CAS  Google Scholar 

  31. Parkinson, J. E. and Smith, G. L. (1994) Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. Virology 204, 376–390.

    Article  PubMed  CAS  Google Scholar 

  32. Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G., and Griffiths, G. (1994) Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans-Golgi network. J. Virol. 68, 130–147.

    PubMed  CAS  Google Scholar 

  33. Roos, N., Cyrklaff, M., Cudmore, S., Blasco, R., Krijnse-Locker, J., and Griffiths, G. (1996) A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J. 15, 2343–2355.

    PubMed  CAS  Google Scholar 

  34. Sanderson, C. M., Parkinson, J. E., Hollinshead, M., and Smith, G. L. (1996) Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J. Virol. 70, 905–914.

    PubMed  CAS  Google Scholar 

  35. Payne, L. G. (1980) Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50, 89–100.

    Article  PubMed  CAS  Google Scholar 

  36. Payne, L. G. (1979) Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J. Virol. 31, 147–155.

    PubMed  CAS  Google Scholar 

  37. Boulter, E. A. and Appleyard, G. (1973) Differences between extracellular and intracellular forms of poxvirus and their implications. Prog. Med. Virol. 16, 86–108.

    PubMed  CAS  Google Scholar 

  38. Joklik, W. K. (1962) The purification of four strains of poxvirus. Virology 18, 9–18.

    Article  PubMed  CAS  Google Scholar 

  39. Law, M., Hollinshead, R., and Smith, G. L. (2002) Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. J. Gen. Virol. 83, 209–222.

    PubMed  CAS  Google Scholar 

  40. Cudmore, S., Blasco, R., Vincentelli, R., Esteban, M., Sodeik, B., Griffiths, G., and Krijnse Locker, J. (1996) A vaccinia virus core protein, p39, is membrane associated. J. Virol. 70, 6909–6921.

    PubMed  CAS  Google Scholar 

  41. Eppstein, D. A., Marsh, Y. V., Schreiber, A. B., Newman, S. R., Todaro, G. J., and Nestor, J. J., Jr. (1985) Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature 318, 663–665.

    Article  PubMed  CAS  Google Scholar 

  42. Masters, J., Hinek, A. A., Uddin, S., Platanias, L. C., Zeng, W., McFadden, G., and Fish, E. N. (2001) Poxvirus infection rapidly activates tyrosine kinase signal transduction. J. Biol. Chem. 276, 48371–48375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Law, M., Smith, G.L. (2004). Studying the Binding and Entry of the Intracellular and Extracellular Enveloped Forms of Vaccinia Virus. In: Isaacs, S.N. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 269. Humana Press. https://doi.org/10.1385/1-59259-789-0:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-789-0:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-229-2

  • Online ISBN: 978-1-59259-789-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics