Skip to main content

Construction and Isolation of Recombinant MVA

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 269))

Abstract

Modified vaccinia virus Ankara (MVA) is a valuable tool for the expression of recombinant genes used for such purposes as the study of protein functions or characterization of cellular and humoral immune responses. A major advantage of MVA is its clear safety record, and it can be handled under biosafety level 1 conditions. Despite its replication deficiency in human and most mammalian cells, MVA provides high-level gene expression and has proven to be immunogenic when delivering heterologous antigens in animals and humans. This chapter provides state-of-the-art protocols for generation, plaque isolation, molecular characterization, as well as amplification and purification of MVA vector viruses to obtain recombinant viruses for further evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R., and Moss, B. (1994) A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12, 1032–1040.

    Article  PubMed  CAS  Google Scholar 

  2. Hirsch, V. M., Fuerst, T. R., Sutter, G., Carroll, M. W., Yang, L. C., Goldstein, S., et al. (1996) Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: Effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J. Virol. 70, 3741–3752.

    PubMed  CAS  Google Scholar 

  3. Rosenberg, S. A. (1997) Cancer vaccines based on the identification of the genes encoding cancer regression antigens. Immunol. Today 18, 175–182.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider, J., Gilbert, S. C., Blanchard, T. J., Hanke, T., Robson, K. J., Hannan, C. M., et al. (1998) Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4, 397–402.

    Article  PubMed  CAS  Google Scholar 

  5. Zavala, F., Rodrigues, M., Rodriguez, D., Rodriguez, J. R., Nussenzweig, R. S., Esteban, M., et al. (2001) A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280, 155–159.

    Article  PubMed  CAS  Google Scholar 

  6. Amara, R. R., Villinger, F., Altman, J. D., Lydy, S. L., O’Neil, S. P., Staprans, S. I., et al. (2001) Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74.

    Article  PubMed  CAS  Google Scholar 

  7. Moss, B. (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination and safety. Proc. Natl. Acad. Sci. USA 93, 11341–11348.

    Article  PubMed  CAS  Google Scholar 

  8. Sutter, G. and Staib, C. (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 3, 263–271.

    Article  PubMed  CAS  Google Scholar 

  9. Sutter, G. and Moss, B. (1992) Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 89, 10847–10851.

    Article  PubMed  CAS  Google Scholar 

  10. Tartaglia, J., Perkus, M. E., Taylor, J., et al. (1992) NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232.

    Article  PubMed  CAS  Google Scholar 

  11. Mayr, A., Hochstein-Mintzel, V., and Stickl, H. (1975) Abstammung, eigenschaften und verwendung des attenuierten vaccinia-stammes MVA. Infection 3, 6–14.

    Article  Google Scholar 

  12. Hochstein-Mintzel, V., Hänichen, T., Huber, H. C., and Stickl, H. (1975) An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola. Zbl. Bakt. Hyg. [Orig. A] 230, 283–297.

    CAS  Google Scholar 

  13. Ramirez, J. C., Gherardi, M. M., Rodriguez, D., et al. (2000) Attenuated modified vaccinia virus Ankara can be used as an immunizing agent under conditions of preexisting immunity to the vector. J. Virol. 74, 7651–7655.

    Article  PubMed  CAS  Google Scholar 

  14. Stittelaar, K. J., Kuiken, T., de Swart, R. L., et al. (2001) Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 19, 3700–3709.

    Article  PubMed  CAS  Google Scholar 

  15. Staib, C., Lowel, M., Erfle, V., and Sutter, G. (2003) Improved host range selection for recombinant modified vaccinia virus Ankara. Biotechniques 34, 694–700.

    PubMed  CAS  Google Scholar 

  16. Kaerber, G. (1931) Beitrag zur kollektiven behandlung pharmakologischer reihenversuche. Arch. Exp. Pathol. Pharmakol. 162, 480.

    Article  Google Scholar 

  17. Staib, C., Drexler, I., Ohlmann, M., Wintersperger, S., Erfle, V., and Sutter, G. (2000) Transient host range selection for genetic engineering of modified vaccinia virus Ankara. Biotechniques 6, 1137–1148.

    Google Scholar 

  18. Sutter, G., Ohlmann, M., and Erfle, V. (1995) Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett. 371, 9–12.

    Article  PubMed  CAS  Google Scholar 

  19. Wyatt, L. S., Shors, S. T., Murphy, B. R., and Moss, B. (1996) Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 14, 1451–1458.

    Article  PubMed  CAS  Google Scholar 

  20. Drexler, I., Antunes, E., Schmitz, M., Wolfel, T., Huber, C., Erfle, V., et al. (1999) Modified vaccinia virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase-and melanoma-specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo. Cancer Res. 59, 4955–4963.

    PubMed  CAS  Google Scholar 

  21. Carroll, M. and Moss, B. (1995) E. coli beta-glucuronidase (GUS) as a marker for recombinant vaccinia viruses. Biotechniques 19, 352–355.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Staib, C., Drexler, I., Sutter, G. (2004). Construction and Isolation of Recombinant MVA. In: Isaacs, S.N. (eds) Vaccinia Virus and Poxvirology. Methods in Molecular Biology, vol 269. Humana Press. https://doi.org/10.1385/1-59259-789-0:077

Download citation

  • DOI: https://doi.org/10.1385/1-59259-789-0:077

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-229-2

  • Online ISBN: 978-1-59259-789-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics