Transient and Inducible Expression of Vaccinia/T7 Recombinant Viruses

  • Mohamed Ragaa Mohamed
  • Edward G. Niles
Part of the Methods in Molecular Biology book series (MIMB, volume 269)

Abstract

Recombinant DNA technology has made it possible to develop molecular cloning vectors that allow the expression of heterologous genes in a variety of animal viruses. This chapter discusses the use of vaccinia virus encoding bacteriophage T7 RNA polymerase as an expression vector system. A chosen gene is inserted into a plasmid vector designed to express genes under the control of the T7 promoter. Transient expression can then be achieved either by transfecting this plasmid into cells infected with the recombinant vaccinia virus expressing T7 RNA polymerase, vTF7-3 or by crossing this plasmid into the vaccinia virus genome and coinfecting cells with both viruses. Moreover, placement of lacO downstream of the vaccinia virus P11 late promoter regulating T7 RNA polymerase expression, and integration of lacI under vaccinia promoter control into the viral genome, vT7lacOI, yielded a recombinant virus capable of IPTG-inducible T7 promoter-controlled expression of foreign genes.

Key Words

T7 transient inducible expression repressor recombinant vaccinia 

References

  1. 1.
    Mackett, M. and Smith, G. L. (1986) Vaccinia virus expression vectors. J. Gen. Virol. 67, 2067–2082.PubMedCrossRefGoogle Scholar
  2. 2.
    Moss, B. and Flexner, C. (1987) Vaccinia virus expression vectors. Ann. Rev. Immunol. 5, 305–324.CrossRefGoogle Scholar
  3. 3.
    Piccini, A. and Paoletti, E. (1988) Vaccinia: virus, vector, vaccine. Adv. Virus Res. 34, 43–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackett, M., Smith, G. L., and Moss, B. (1984) General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49, 857–864.PubMedGoogle Scholar
  5. 5.
    Chakrabarti, S., Brechling, K., and Moss, B. (1985) Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5, 3403–3409.PubMedGoogle Scholar
  6. 6.
    Falkner, F. G. and Moss, B. (1988) Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J. Virol. 62, 1849–1854.PubMedGoogle Scholar
  7. 7.
    Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuerst, T. R., Earl, P. L., and Moss, B. (1987) Use of a hybrid vaccinia virus T7 RNA polymerase system for expression of target genes. Mol. Cell. Biol. 7, 2538–2544.PubMedGoogle Scholar
  9. 9.
    Rodriguez, D., Zhou, Y., Rodriguez. J-R., Durbin, R. K., Jiminez, V., McAllister, W. T., and Esteban, M. (1990) Regulated expression of nuclear genes by T3 RNA polymerase and lac repressor, using recombinant vaccinia virus vectors. J. Virol. 64, 4851–4857.PubMedGoogle Scholar
  10. 10.
    Usdin, T. B., Brownstein, M. J., Moss, B., and Isaacs, S. N. (1993) SP6 RNA polymerase containing vaccinia virus for rapid expression of cloned genes in tissue culture. Biotechniques 14, 222–224.PubMedGoogle Scholar
  11. 11.
    Chamberlain, M. and Ryan, T. (1982) Bacteriophage DNA-dependent RNA polymerase, in The Enzymes, vol. 15 (Boyer, P., ed.), Academic Press, New York, pp. 82–108.Google Scholar
  12. 12.
    Dunn, J. J. and Studier, F. W. (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–435.Google Scholar
  13. 13.
    Elroy-Stein, O., Fuerst, T. R., and Moss, B. (1989) Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc. Natl. Acad. Sci. USA 86, 6126–6130.PubMedCrossRefGoogle Scholar
  14. 14.
    Elroy-Stein, O. and Moss, B. (1990) Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc. Natl. Acad. Sci. USA 87, 6743–6747.PubMedCrossRefGoogle Scholar
  15. 15.
    Miller, J. H. and Reznikoff, W. S., eds. (1980) The Operon. Cold Spring Harbor, New York.Google Scholar
  16. 16.
    Fuerst, T. R., Fernandez, M. P., and Moss, B. (1989) Transfer of the inducible lac repressor/operator system from Escherichia coli to a vaccinia virus expression vector. Proc. Natl. Acad. Sci. USA 86, 2549–2553.PubMedCrossRefGoogle Scholar
  17. 17.
    Rodriguez, J. F. and Smith, G. L. (1990) Inducible gene expression from vaccinia virus. Virology 177, 239–250.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu, M.C.-T. and Davidson, N. (1987) The inducible lac operator-repressor system is functional in mammalian cells. Cell 48, 555–666.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, M., Figge, J., Jeang, K.-T., Khoury, G., Livingston, D. M., and Roberts, T. M. (1987) lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell 49, 603–612.PubMedCrossRefGoogle Scholar
  20. 20.
    Figge, J., Wright, C., Collins, C. J., Roberts, T. M., and Livingston, D. M. (1988) Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell 52, 713–722.PubMedCrossRefGoogle Scholar
  21. 21.
    Traktman, P., Liu, K., DeMasi, J., Rollins, R., Jesty, S., and Unger, B. (2000) Elucidating the essential role of the A14 phosphoprotein in vaccinia virus morphogenesis: construction and characterization of a tetracycline-inducible recombinant. J. Virol. 74, 3682–3695.PubMedCrossRefGoogle Scholar
  22. 22.
    Sutter, G. and Moss, B. (1995) Novel vaccinia vector derived from the host range restricted and highly attenuated MVA strain of vaccinia virus. Dev. Biol. Stand. 84, 195–200.PubMedGoogle Scholar
  23. 23.
    Wyatt, L. S., Moss, B., and Rozenblatt, S. (1995) Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology 210, 202–205.PubMedCrossRefGoogle Scholar
  24. 24.
    Sutter, G., Ohlmann, M., and Erfle, V. (1995) Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett. 371, 9–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Mayr, A., Hochstein-Mintzel, V., and Stickl, H. (1975) Abstammung, eigenschaften und verwendung des attenuierten vaccinia-stammes MVA. Infection 3, 6–14.CrossRefGoogle Scholar
  26. 26.
    Meyer, H., Sutter, G., and Mayr, A. (1991) Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 72, 1031–1038.PubMedCrossRefGoogle Scholar
  27. 27.
    Sutter, G., Wyatt, L. S., Foley, P. L., Bennink, J. R., and Moss, B. (1994) A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12, 1032–1040.PubMedCrossRefGoogle Scholar
  28. 28.
    Sutter, G. and Moss, B. (1992) Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 89, 10847–10851PubMedCrossRefGoogle Scholar
  29. 29.
    Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W. A., and Fuerst, T. R. (1990) New mammalian expression vectors. Nature 348, 91–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Rhim, J. S., Cho, H. Y., and Huebner, R. J. (1975) Non-producer human cells induced by murine sarcoma virus. Int. J. Cancer 15, 23–29.PubMedCrossRefGoogle Scholar
  31. 31.
    Alexander, W. A., Moss, B., and Fuerst, T. R. (1992) Regulated expression of foreign genes in vaccina virus under the control of bacteriophage T7 RNA polymerase and the E. coli lac repressor. J. Virol. 66, 2934–2942.PubMedGoogle Scholar
  32. 32.
    Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  33. 33.
    Fathi, Z., Sridhar, P., Pacha, R. F., and Condit, R. (1986) Efficient targeted insertion of an unselected marker into the vaccina virus genome. Virology 155, 97–105.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2004

Authors and Affiliations

  • Mohamed Ragaa Mohamed
    • 1
  • Edward G. Niles
    • 2
  1. 1.Department of Biochemistry, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Department of Microbiology, School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffalo

Personalised recommendations