Skip to main content

Peptide Synthesis in the Study of Collagen-Platelet Interactions

  • Protocol
  • 1174 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 273))

Abstract

Collagen is the most abundant protein in vertebrates and has an essential structural role. Thus, the tensile strength of the fibrous collagens, types I, II, III, V, and XI, is fundamental to the function of bone, skin, tendons, cartilage, and blood vessel walls. Similarly, the network-forming collagens, such as types IV and VI, are key components of the extracellular matrix of endothelial and epithelial tissues. Collagens interact with cells both directly, through receptors that may modulate cell function, and indirectly, through the numerous proteins and other constituents of connective tissues that bind simultaneously to both collagen and their own specific cell surface receptors. Collagen plays a crucial role in diverse biological processes, either as a mechanical support or as an active ligand. For this reason, collagen preparations are widely used as a cell growth matrix or as a means of activating cells. The capacity of collagens of the blood vessel wall to activate platelets represents a very accessible example of this principle in operation, utilizing direct interaction with integrin α2β1 and glycoprotein (GP) VI, and indirect interaction with GPIb via von Willebrand factor. Binding sites within collagen and their complementary receptors on the cell surface or within the matrix are potential targets, as yet unexploited, for the treatment of several disease processes, such as arterial thrombosis. For this potential to be realized, each interaction must be understood in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rossi, A., Zanaboni, G., Cetta, G., and Tenni, R. (1997) Stability of type I collagen CNBr peptide trimers. J. Mol. Biol. 269, 488–493.

    Article  PubMed  CAS  Google Scholar 

  2. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000) Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56.

    Article  PubMed  CAS  Google Scholar 

  3. Consonni, R., Zetta, L., Longhi, R., Toma, L., Zanaboni, G., and Tenni, R. (2000) Conformational analysis and stability of collagen peptides by CD and by 1H-and 13C-NMR spectroscopies. Biopolymers 53, 99–111.

    Article  PubMed  CAS  Google Scholar 

  4. Knight, C. G, Morton, L. F., Onley, D. J., Peachey, A. R., Ichinohe, T., Okuma, M., et al. (1999) Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc. Res. 41, 450–457.

    Article  PubMed  CAS  Google Scholar 

  5. Knight, C. G, Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., et al. (1998) Identification in collagen type I of an integrin α2β1-binding site containing an essential GER sequence. J. Biol. Chem. 273, 33,287–33,294.

    Article  PubMed  CAS  Google Scholar 

  6. Croce, K, Flaumenhaft, R., Rivers, M., Furie, B., Furie, B. C., Herman, I. M., et al. (1999) Inhibition of calpain blocks platelet secretion, aggregation, and spreading. J. Biol. Chem. 274, 36,321–36,327.

    Article  PubMed  CAS  Google Scholar 

  7. Privalov, P. L. (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem. 35, 1–104.

    Article  PubMed  CAS  Google Scholar 

  8. Leikina, E., Mertts, M. V., Kuznetsova, N., and Leikin, S. (2002) Type I collagen is thermally unstable at body temperature. Proc. Nat. Acad. Sci. USA 99, 1314–1318.

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins, C. L. and Raines, R. T. (2002) Insights on the conformational stability of collagen. Nat. Prod. Rep. 19, 49–59.

    Article  PubMed  CAS  Google Scholar 

  10. Grab, B., Miles, A. J., Furcht, L. T, and Fields, G. B. (1996) Promotion of fibroblast adhesion by triple-helical peptide models of type I collagen-derived sequences. J. Biol. Chem. 271, 12,234–12,240.

    Article  PubMed  CAS  Google Scholar 

  11. O’Neil, K. T. and DeGrado, W. F. (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651.

    Article  PubMed  Google Scholar 

  12. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A., and Brodsky, B. (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39, 14,960–14,967.

    Article  PubMed  CAS  Google Scholar 

  13. Chan, W. C. and White, P. D. (eds.) (2000) Fmoc Solid Phase Peptide Synthesis. A Practical Approach, Oxford University Press, Oxford, UK.

    Google Scholar 

  14. Grant, G. A. (ed.) (2002) Synthetic Peptides. A User’s Guide. 2nd ed., Oxford University Press USA, New York.

    Google Scholar 

  15. Fields, C. G, Grab, B., Lauer, J. L., and Fields, G. B. (1995) Purification and analysis of synthetic, triple-helical “minicollagens” by reversed-phase high-performance liquid chromatography. Anal. Biochem. 231, 57–64.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, T., Quibell, M., Owen, D., and Sheppard, R. C. (1993) A reversible protecting group for the amide bond in peptides. Use in the synthesis of “difficult sequences.” J. Chem. Soc. Chem. Commun. 369–372.

    Google Scholar 

  17. Wöhr, T., Wahl, F., Nefzi, A., Rohwedder, B., Sato, T., Sun, X., et al. (1996) Pseudo-prolines as a solubilising, structure-disrupting protection technique in peptide synthesis. J. Amer. Chem. Soc. 118, 9218–9227.

    Article  Google Scholar 

  18. Johnson, T., Quibell, M., and Sheppard, R. C. (1995) N,O-bisFmoc derivatives of N-(2-hydroxy-4-methoxybenzyl)-amino acids: useful intermediates in peptide synthesis. J. Peptide Sci. 1, 11–25.

    Article  CAS  Google Scholar 

  19. Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (2000) The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40.

    Article  PubMed  CAS  Google Scholar 

  20. Achison, M., Elton, C. M., Hargreaves, P. G, Knight C. G, Barnes M. J., and Farndale R. W. (2001) Integrin-independent tyrosine phosphorylation of p125FAK in human platelets stimulated by collagen. J. Biol. Chem. 276, 3167–3174.

    Article  PubMed  CAS  Google Scholar 

  21. Morton, L. F., Hargreaves, P. G., Farndale, R. W., Young, R. D., and Barnes, M. J. (1995) Integrin α2β1-independent activation of platelets by collagen: collagen tertiary (triple helical) and quaternary (polymeric) structures are sufficient alone for activity. Biochem. J. 306, 337–344.

    PubMed  CAS  Google Scholar 

  22. Asselin, J., Knight, C. G, Farndale, R. W., Barnes, M. J., and Watson, S. P. (1999) The monomeric glycine-proline-hydroxyproline (GPP*)10 repeat sequence is a partial agonist of the collagen receptor glycoprotein VI. Biochem. J. 339,.413–418

    Article  PubMed  Google Scholar 

  23. Gibbins, J., Okuma, M., Farndale, R. W., Barnes, M. J., and Watson S. P. (1997) Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γ-chain. FEBS Lett. 413, 255–259.

    Article  PubMed  CAS  Google Scholar 

  24. Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998) Glycoprotein VI is a major collagen receptor, recognizing the platelet-activating quaternary structure of collagen, whereas CD36, GPIIb/IIIa and vWf do not.Blood 91, 491–499.

    PubMed  CAS  Google Scholar 

  25. Merrifield, R. B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Amer. Chem. Soc. 85, 2149–2154.

    Article  CAS  Google Scholar 

  26. Fields, C. G. and Fields, G. B. (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid-phase peptide-synthesis. Tetrahedron Lett. 34, 6661–6664.

    Article  CAS  Google Scholar 

  27. Lauer, J. L., Fields, C. G., and Fields, G. B. (1994) Sequence dependence of aspartimide formation during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Lett. Peptide Sci. 1, 197–205.

    Article  Google Scholar 

  28. Packman, L. C. (1995) N-2-Hydroxy-4-methoxybenzyl (Hmb) backbone protection prevents double aspartimide formation in a “difficult” peptide sequence. Tetrahedron Lett. 36, 7523–7526.

    Article  CAS  Google Scholar 

  29. Karlström, A. H. and Undén, A. E. (1996) A new protecting group for aspartic acid that minimises piperidine-catalysed aspartimide formation in Fmoc solid phase peptide synthesis. Tetrahedron Lett. 37, 4243–4246.

    Article  Google Scholar 

  30. Han, Y., Albericio, F., and Barany, G. (1997) Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J. Org. Chem. 62, 4307–4312.

    Article  PubMed  CAS  Google Scholar 

  31. Albericio, F., Bofill, J. M., El-Faham, A., and Kates, S. A. (1998) Use of onium salt-based coupling reagents in peptide synthesis. J. Org. Chem. 63, 9678–9683.

    Article  CAS  Google Scholar 

  32. Huang, H., and Rabenstein, D. L. (1999) A cleavage cocktail for methionine-containing peptides. J. Peptide Res. 53, 548–553.

    Article  CAS  Google Scholar 

  33. Taboada, L., Nicolas, E., and Giralt, E. (2001). One-pot full peptide deprotection in Fmoc-based solid-phase peptide synthesis: methionine sulfoxide reduction with Bu4NBr. Tetrahedron Lett. 42, 1891–1893.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Knight, C.G., Onley, C.M., Farndale, R.W. (2004). Peptide Synthesis in the Study of Collagen-Platelet Interactions. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology™, vol 273. Humana Press. https://doi.org/10.1385/1-59259-783-1:349

Download citation

  • DOI: https://doi.org/10.1385/1-59259-783-1:349

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-011-3

  • Online ISBN: 978-1-59259-783-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics