Skip to main content

Nitric Oxide Signaling in Platelets

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 273))

  • 1112 Accesses

Abstract

Nitric oxide was recognized fifteen years ago to be an endothelium-dependent relaxing factor with an important role in vasomotor control through its actions on vascular smooth muscle (1). Shortly after this discovery it was also demonstrated that nitric oxide (NO) is an inhibitor of platelet function and plays a physiological role in the reduction in platelet activation (2). This is achieved because platelets while circulating, being the smallest of the blood cells, are closest to the endothelium, which is considered to be the most important source of NO in the vasculature. However, it was soon realized that platelets themselves are capable of biosynthesising NO when they are activated (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer, R. M. J, Ferridge, A. G, and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (London) 327, 524–526.

    Article  CAS  Google Scholar 

  2. Radomski, M. W., Palmer, R. M., and Moncada, S. (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2, 1057–1058.

    Article  PubMed  CAS  Google Scholar 

  3. Radomski, M. W., Palmer, R. M. J., and Moncada, S. (1990) Characterization of the L-arginine:nitric oxide pathway in human platelets. Br. J. Pharmacol. 101, 325–328.

    PubMed  CAS  Google Scholar 

  4. Palmer, R. M. J, Ashton, D. S., and Moncada, S. (1988) Vascular endothelial cells biosyn-thesise nitric oxide from L-arginine. Nature (London) 333, 664–666.

    Article  CAS  Google Scholar 

  5. Alderton, W. K., Cooper, C. E., and Knowles, R. G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615.

    Article  PubMed  CAS  Google Scholar 

  6. Freedman, J. E., Loscalzo, J., Barnard, M. R., Alpert, C., Keaney, J. F., and Michelson, A. D. (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J. Clin. Invest. 100, 350–356.

    Article  PubMed  CAS  Google Scholar 

  7. Anfossi, G., Russo, I., Massucco, P., Mattiello, L., Cavalot, F., Balbo, A., et al. (2002) Adenosine increases human platelet levels of cGMP through nitric oxide—possible role in its antiaggregating effect. Thromb. Res. 105, 71–78.

    Article  PubMed  CAS  Google Scholar 

  8. Anfossi, G., Russo, I., Massucco, P., Mattiello, L., and Trovati, M. (2002) Catecholamines, via β-adrenoreceptors, increase intracellular concentrations of 3′,5′-cyclic guanosine monophosphate (cGMP) through nitric oxide in human platelets. Thromb. Haemost. 87, 539–540.

    PubMed  CAS  Google Scholar 

  9. Ignarro, L. J. (1989) Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Seminars in Haematol. 26, 63–76.

    CAS  Google Scholar 

  10. Wedel, B., Harteneck, C., Foerster, J., Friebe, A., Schultz, A., Schultz, G., et al. (1995) Functional domains of soluble guanylyl cyclase. J. Biol. Chem. 270, 24,871–24,875.

    Article  PubMed  CAS  Google Scholar 

  11. Friebe, A., Schultz, G., and Koesling, D. (1998) Sensitizing soluble guanylyl cyclase to become a highly co-sensitive enzyme. EMBO J. 15, 6863–6868.

    Google Scholar 

  12. Halbrugge, M., Friedrich, C., Eigenthaler, M., Schanzenbacher, P., and Walter, U. (1990) Stoichiometric and reversible phosphorylation of 46 kDa protein in human platelets in response to cGMP and cAMP elevation. J. Biol. Chem. 265, 3088–3093.

    PubMed  CAS  Google Scholar 

  13. Prehoda, K. E., Lee, D. H., and Lim, W. A. (1999) Structure of the Enabled/VASP homology 1 domain—peptide complex: a key componenet in the spatial control of actin assembly. Cell 97, 471–480.

    Article  PubMed  CAS  Google Scholar 

  14. Aszodi, A., Pfeifer, A., Ahmad, M., Glauner, M., Zhou, X.-H., Ny, L., et al. (1999) The vasodilator-stimulated phosphoprotein is involved in cGMP and cAMP-mediated inhibition of agonist induced platelet aggregation, but is dispensable for smooth muscle function EMBO J. 18, 37–48.

    Article  PubMed  CAS  Google Scholar 

  15. Stamler, J. S., Lamas, S., and Fang, F. C. (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., and Stamler, J. S. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494.

    Article  PubMed  CAS  Google Scholar 

  17. Hiriyama, A., Noronha-Dutra, A. A., Gordge, M. P., Neild, G. H., and Hothersall, J. S. (1999) S-nitrosothiols are stored by platelets and released during platelet-neutrophil interactions. Nitric Oxide: Biology and Chemistry 3, 95–104.

    Article  Google Scholar 

  18. Waldron, G. J. and Cole, W. C. (1999) Activation of vascular smooth muscle K+ channels by endothelium-derived relaxing factors. Clin. Pharm. and Physiol. 26, 180–184.

    Article  CAS  Google Scholar 

  19. Freedman, J. E., Frei, B., Welch, G. N., and Loscalzo, J. (1995) Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J. Clin. Invest. 96, 394–400.

    Article  PubMed  CAS  Google Scholar 

  20. Vargas, J. R., Radomski, M., Moncada, S. (1982) The use of prostaglandin in the separation from plasma and washing of human platelets. Prostaglandins 23, 929–945.

    Article  PubMed  CAS  Google Scholar 

  21. Naseem, K. M. and Bruckdorfer, K. R. (1995) Hydrogen peroxide at low concentrations strongly enhances the inhibitory effect of nitric oxide on platelets. Biochem. J. 310, 149–153.

    PubMed  CAS  Google Scholar 

  22. Riddell, D. R., Graham, A., and Owen, J. S. (1997) Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. J. Biol. Chem. 272, 89–95.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, G. R., Zhu, Y., Halushka, P. V., Lincoln, T. M., and Mendelsohn, M. E. (1998) Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic-GMP dependent protein kinase. Proc. Natl. Acad. Sci. USA 95, 4888–4893.

    Article  PubMed  CAS  Google Scholar 

  24. Butt, E., ImmLer, D., Meyer, H. E., Kotlyarov, A., Laass, K., and Gaestel, M. (2001) Heat shock protein 27 is a substrate of cyclic GMP-dependent kinase in intact human platelets. J. Biol. Chem. 276, 7108–7113.

    Article  PubMed  CAS  Google Scholar 

  25. Sawada, N., Itoh, H., Yamashita, J., Doi, K., Inoue, M., Masatasugu, K., et al. (2001) cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys. Res. Comm. 280, 798–805.

    Article  PubMed  CAS  Google Scholar 

  26. Colbran, J. L., Francis, S. H., Leach, A. B., Thomas, M. K., Jiang, H., McAllister, L. M., et al. (1992) A phenylalanine in peptide substrates provides for selectivity between cGMP and cAMP-dependent protein kinases. J. Biol. Chem. 287, 9589–9594.

    Google Scholar 

  27. Burkhard, M., Glazova, M., Gambaryan, S., Vollkommer, T., Butt, E., Bader, B., et al. (2000) KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J. Biol. Chem. 275, 33,536–33,541.

    Article  Google Scholar 

  28. Marley, R., Patel, R. P., Orie, N., Ceaser, E., Darley-Usmar, V., and Moore, K. P. (2001) Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radical Biology and Medicine 31, 688–696.

    Article  PubMed  CAS  Google Scholar 

  29. Humbert, P., Niroomand, F., Fischer, G., Mayer, B., Koesling, D., Hinsch, K. D., et al. (1990) Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur. J. Biochem. 190, 273–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Low, S.Y., Bruckdorfer, K.R. (2004). Nitric Oxide Signaling in Platelets. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology™, vol 273. Humana Press. https://doi.org/10.1385/1-59259-783-1:313

Download citation

  • DOI: https://doi.org/10.1385/1-59259-783-1:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-011-3

  • Online ISBN: 978-1-59259-783-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics