Skip to main content

Measurement and Manipulation of [Ca2+]i in Suspensions of Platelets and Cell Cultures

  • Protocol
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 273))

Abstract

The importance of cytosolic calcium (Ca2+) elevation in the regulation of platelet functions (shape change, aggregation, and secretion) has been widely acknowledged. Therefore its concentration must be tightly regulated, with most of it being sequestrated in intracellular organelles such as the dense tubular system (the releasable intracellular Ca2+ store) and mitochondria, or bound to membranes and cytoplasmic proteins. Only a small fraction is freely available in the ionized form. The maintenance of low cytosolic calcium concentration (around 100 nM), necessary to keep platelets in a resting state or to reestablish a resting state after activation, is achieved by a combination of Ca2+/ATPases and a Na+/Ca2+ exchanger. Platelets contain two types of Ca2+/ATPases: the plasma membrane Ca2+/ATPase (PMCA types 1–4) (1) and the sarco-endoplasmic reticulum Ca2+/ATPase (SERCA) present on intracellular stores (2). Two types of Na+/Ca2+ exchangers have been identified; the platelets have been suggested to contain the retinal type, which is K+-dependent and located in the plasma membrane (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli, E. (1994) Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. Faseb. J. 8, 993–1002.

    PubMed  CAS  Google Scholar 

  2. Burk, S. E., Lytton, J., MacLennan, D. H., and Shull, G. E. (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J. Biol. Chem. 264, 18,561–18,568.

    PubMed  CAS  Google Scholar 

  3. Kimura, M., Aviv, A., and Reeves, J. P. (1993) K+-dependent Na+/Ca2+ exchange in human platelets. J. Biol. Chem. 268, 6874–6877.

    PubMed  CAS  Google Scholar 

  4. Kimura, M., Jeanclos, E. M., Donnelly, R. J., Lytton, J., Reeves, J. P., and Aviv, A. (1999) Physiological and molecular characterization of the Na+/Ca2+ exchanger in human platelets. Am. J. Physiol. 277, H911–H917.

    PubMed  CAS  Google Scholar 

  5. Rink, T. J. and Sage, S. O. (1990) Calcium signaling in human platelets. Annu. Rev. Physiol. 52, 431–449.

    Article  PubMed  CAS  Google Scholar 

  6. Sage, S. O., MacKenzie, A. B., Jenner, S., and Mahaut-Smith, M. P. (1997) Purinoceptor-evoked calcium signalling in human platelets. Prostaglandins Leukot. Essent. Fatty Acids 57, 435–438.

    Article  PubMed  CAS  Google Scholar 

  7. Heemskerk, J. W. M. and Sage, S. O. (1994) Calcium signalling in platelets and other cells. Platelets 5, 295–316.

    Article  PubMed  CAS  Google Scholar 

  8. Tsien, R. Y., Pozzan, T., and Rink, T. J. (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell. Biol. 94, 325–334.

    Article  PubMed  CAS  Google Scholar 

  9. Sage, S. O. (1997) The Wellcome Prize Lecture. Calcium entry mechanisms in human platelets. Exp. Physiol. 82, 807–823.

    PubMed  CAS  Google Scholar 

  10. Authi, K. S. (1997) Ca2+ homeostasis in human platelets, in Platelets and their Factors (von Bruchhausen, W. U., ed.), Springer, Berlin, Germany, pp. 325–370.

    Google Scholar 

  11. El-Daher, S. S., Patel, Y., Siddiqua, A., Hassock, S., Edmunds, S., Maddison, B., et al. (2000) Distinct localization and function of (1,4,5)IP(3) receptor subtypes and the (1,3,4,5)IP4 receptor GAP1IP4BP in highly purified human platelet membranes. Blood 95, 3412–3422.

    PubMed  Google Scholar 

  12. Offermanns, S. (2000) The role of heterotrimeric G proteins in platelet activation. Biol. Chem. 381, 389–396.

    Article  PubMed  CAS  Google Scholar 

  13. Watson, S. P., Asazuma, N., Atkinson, B., Berlanga, O., Best, D., Bobe, R., et al. (2001) The role of ITAM-and ITIM-coupled receptors in platelet activation by collagen. Thromb. Haemost. 86, 276–288.

    PubMed  CAS  Google Scholar 

  14. Daniel, J. L., Dangelmaier, C., and Smith, J. B. (1994) Evidence for a role for tyrosine phosphorylation of phospholipase C γ 2 in collagen-induced platelet cytosolic calcium mobilization. Biochem. J. 302, 617–622.

    PubMed  CAS  Google Scholar 

  15. Bootman, M. D., Berridge, M. J., and Roderick, H. L. (2002) Calcium signalling: more messengers, more channels, more complexity. Curr. Biol. 12, R563–R565.

    Article  PubMed  CAS  Google Scholar 

  16. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

    Article  PubMed  CAS  Google Scholar 

  17. Rosado, J. A., and Sage, S. O. (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Trends Cardiovasc. Med. 10, 327–332.

    Article  PubMed  CAS  Google Scholar 

  18. Trepakova, E. S., Csutora, P., Hunton, D. L., Marchase, R. B., Cohen, R. A., and Bolotina, V. M. (2000) Calcium influx factor directly activates store-operated cation channels in vascular smooth muscle cells. J. Biol. Chem. 275, 26,158–26,163.

    Article  PubMed  CAS  Google Scholar 

  19. Hassock, S. R., Zhu, M. X., Trost, C., Flockerzi, V., and Authi, K. S. (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100, 2801–2811.

    Article  PubMed  CAS  Google Scholar 

  20. MacKenzie, A. B., Mahaut-Smith, M. P., and Sage, S. O. (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J. Biol. Chem. 271, 2879–2881.

    Article  PubMed  CAS  Google Scholar 

  21. Mahaut-Smith, M. P., Sage, S. O., and Rink, T. J. (1990) Receptor-activated single channels in intact human platelets. J. Biol. Chem. 265, 10,479–10,483.

    PubMed  CAS  Google Scholar 

  22. Mahaut-Smith, M. P., Sage, S. O., and Rink, T. J. (1992) Rapid ADP-evoked currents in human platelets recorded with the nystatin permeabilized patch technique. J. Biol. Chem. 267, 3060–3065.

    PubMed  CAS  Google Scholar 

  23. Brass, L. F. (1985) Ca2+ transport across the platelet plasma membrane. A role for membrane glycoproteins IIB and IIIA. J. Biol. Chem. 260, 2231–2236.

    PubMed  CAS  Google Scholar 

  24. Fujimoto, T., Fujimura, K., and Kuramoto, A. (1991) Electrophysiological evidence that glycoprotein IIb-IIIa complex is involved in calcium channel activation on human platelet plasma membrane. J. Biol. Chem. 266, 16,370–16,375.

    PubMed  CAS  Google Scholar 

  25. Nesbitt, W. S., Kulkarni, S., Giuliano, S., Goncalves, I., Dopheide, S. M., Yap, C. L., et al. (2002) Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972.

    Article  PubMed  CAS  Google Scholar 

  26. Mazzucato, M., Pradella, P., Cozzi, M. R., De Marco, L., and Ruggeri, Z. M. (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100, 2793–2800.

    Article  PubMed  CAS  Google Scholar 

  27. Rink, T. J., Smith, S. W., and Tsien, R. Y. (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett. 148, 21–26.

    Article  PubMed  CAS  Google Scholar 

  28. Grynkiewicz, G., Poenie, M., and Tsien, R. Y (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  29. Rao, G. H., Peller, J. D., and White, J. G. (1985) Measurement of ionized calcium in blood platelets with a new generation calcium indicator. Biochem. Biophys. Res. Commun. 132, 652–657.

    Article  PubMed  CAS  Google Scholar 

  30. Sage, S. O. and Rink, T. J. (1986) Kinetic differences between thrombin-induced and ADP-induced calcium influx and release from internal stores in fura-2-loaded human platelets. Biochem. Biophys. Res. Commun. 136, 1124–1129.

    Article  PubMed  CAS  Google Scholar 

  31. Sage, S. O. and Rink, T. J. (1987) The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J. Biol. Chem. 262, 16,364–16,369.

    PubMed  CAS  Google Scholar 

  32. Rao, G. H. (1988) Measurement of ionized calcium in normal human blood platelets. Anal. Biochem. 169, 400–404.

    Article  PubMed  CAS  Google Scholar 

  33. Sage, S. O., Merritt, J. E., Hallam, T. J., and Rink, T. J. (1989) Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem. J. 258, 923–926.

    PubMed  CAS  Google Scholar 

  34. Hechler, B., Cazenave, J. P., Hanau, D., and Gachet, C. (1995) Presence of functional P2T and P2U purinoceptors on the human megakaryoblastic cell line, Meg-01 characterization by functional and binding studies. Nouv. Rev. Fr. Hematol. 37, 231–240.

    PubMed  CAS  Google Scholar 

  35. Leon, C., Hechler, B., Vial, C., Leray, C., Cazenave, J. P., and Gachet, C. (1997) The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett. 403, 26–30.

    Article  PubMed  CAS  Google Scholar 

  36. Schachter, J. B., Li, Q., Boyer, J. L., Nicholas, R. A., and Harden, T. K. (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor. Br. J. Pharmacol. 118, 167–173.

    PubMed  CAS  Google Scholar 

  37. Hechler, B., Vigne, P., Leon, C., Breittmayer, J. P., Gachet, C., and Frelin, C. (1998) ATP derivatives are antagonists of the P2Y1 receptor: similarities to the platelet ADP receptor. Mol. Pharmacol. 53, 727–733.

    PubMed  CAS  Google Scholar 

  38. Harris, D. A., and Bashford, C. L. (1987) Spectrophotometry and Spectrofluorimetry, A Practical Approach, IRL Press, Oxford.

    Google Scholar 

  39. Cazenave, J. P., Hemmendinger, S., Beretz, A., Sutter-Bay, A., and Launay, J. (1983) Ľagrégation plaquettaire: outil ďinvestigation clinique et ďétude pharmacologique. Méthodologie. Ann. Biol. Clin. 41, 167–179.

    CAS  Google Scholar 

  40. Mustard, J. F., Perry, D. W., Ardlie, N. G., and Packham, M. A. (1972) Preparation of suspensions of washed platelets from humans. Br. J. Haematol. 22, 193–204.

    Article  PubMed  CAS  Google Scholar 

  41. Heemskerk, J. W., Feijge, M. A., Rietman, E., and Hornstra, G. (1991) Rat platelets are deficient in internal Ca2+ release and require influx of extracellular Ca2+ for activation. FEBS Lett. 284, 223–226.

    Article  PubMed  CAS  Google Scholar 

  42. Cavallini, L., Francesconi, M. A., Ruzzene, M., Valente, M., and Deana, R. (1991) A procedure allowing measurement of cytosolic Ca2+ in rat platelets. Inhibition of a plasma lipoprotein on fura 2-AM loading. Thromb. Res. 63, 47–57.

    Article  PubMed  CAS  Google Scholar 

  43. Ruoslahti, E., Pierschbacher, M., Engvall, E., Oldberg, A., and Hayman, E. (1982) Molecular and biological interactions of fibronectin. J. Invest. Dermatol. 79, 65–68.

    Article  CAS  Google Scholar 

  44. Gachet, C. (2001) Identification, characterization, and inhibition of the platelet ADP receptors. Int. J. Hematol. 74, 375–381.

    Article  PubMed  CAS  Google Scholar 

  45. Cattaneo, M., Lecchi, A., Randi, A. M., McGregor, J. L., and Mannucci, P. M. (1992) Identification of a new congenital defect of platelet function characterized by severe impairment of platelet responses to adenosine diphosphate. Blood 80, 2787–2796.

    PubMed  CAS  Google Scholar 

  46. Nurden, P., Savi, P., Heilmann, E., Bihour, C., Herbert, J. M., Maffrand, J. P., et al. (1995) An inherited bleeding disorder linked to a defective interaction between ADP and its receptor on platelets. Its influence on glycoprotein IIb-IIIa complex function. J. Clin. Invest. 95, 1612–1622.

    Article  PubMed  CAS  Google Scholar 

  47. Storey, R. F., Sanderson, H. M., White, A. E., May, J. A., Cameron, K. E., and Heptinstall, S. (2000) The central role of the P2T receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br. J. Haematol. 110, 925–934.

    Article  PubMed  CAS  Google Scholar 

  48. Vulchanova, L., Arvidsson, U., Riedl, M., Wang, J., Buell, G., Surprenant, A., et al. (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc. Natl. Acad. Sci. USA 93, 8063–8067.

    Article  PubMed  CAS  Google Scholar 

  49. Vial, C., Hechler, B., Leon, C., Cazenave, J. P., and Gachet, C. (1997) Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb. Haemost. 78, 1500–1504.

    PubMed  CAS  Google Scholar 

  50. Rolf, M. G., Brearley, C. A., and Mahaut-Smith, M. P. (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb. Haemost. 85, 303–308.

    PubMed  CAS  Google Scholar 

  51. Siess, W. (1989) Molecular mechanisms of platelet activation. Physiol. Rev. 69, 58–178.

    PubMed  CAS  Google Scholar 

  52. Lanza, F., Beretz, A., Kubina, M., and Cazenave, J. P. (1987) Increased aggregation and secretion responses of human platelets when loaded with the calcium fluorescent probes quin2 and fura-2. Thromb. Haemost. 58, 737–743.

    PubMed  CAS  Google Scholar 

  53. Maruyama, I., Hasegawa, T., Yamamoto, T., and Momose, K. (1989) Effects of pluronic F-127 on loading of fura 2/AM into single smooth muscle cells isolated from guinea pig taenia coli. J. Toxicol. Sci. 14, 153–163.

    PubMed  CAS  Google Scholar 

  54. Poenie, M. (1990) Alteration of intracellular fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11, 85–91.

    Article  PubMed  CAS  Google Scholar 

  55. Mahaut-Smith, M. P., Ennion, S. J., Rolf, M. G., and Evans, R. J. (2000) ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br. J. Pharmacol. 131, 108–114.

    Article  PubMed  CAS  Google Scholar 

  56. Leon, C., Hechler, B., Freund, M., Eckly, A., Vial, C., Ohlmann, P., et al. (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J. Clin. Invest. 104, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  57. Leon, C., Vial, C., Gachet, C., Ohlmann, P., Hechler, B., Cazenave, J. P., et al. (1999) The P2Y1 receptor is normal in a patient presenting a severe deficiency of ADP-induced platelet aggregation. Thromb. Haemost. 81, 775–781.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Ohlmann, P., Hechler, B., Cazenave, JP., Gachet, C. (2004). Measurement and Manipulation of [Ca2+]i in Suspensions of Platelets and Cell Cultures. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology™, vol 273. Humana Press. https://doi.org/10.1385/1-59259-783-1:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-783-1:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-011-3

  • Online ISBN: 978-1-59259-783-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics