Advertisement

Two-Dimensional Polyacrylamide Gel Electrophoresis for Platelet Proteomics

  • Katrin Marcus
  • Helmut E. Meyer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 273)

Abstract

Blood platelets are important components of hemostasis, contributing to healing of wounds by forming thrombi and to the initiation of repair processes. They are also involved, however, in the pathogenesis of life-threatening complications such as stroke or myocardial infarction. Following injuries to blood vessels, platelets adhere to the damaged vessel wall, resulting in the formation of vascular plugs and release of intracellular substances, which initiate repair processes. Genetic defects may result in dysfunction of the platelets, inducing bleeding diseases such as Glanzmann thrombasthenia and Bernard-Soulier syndrome (1). Platelets arise as fragments of megakaryocytes, and are anucleate. Hence only restricted synthesis of proteins from residual megakaryocyte and mitochondrial mRNA may be possible, and therefore genome and transcriptome analysis of platelets is a substantial challenge. The clinical relevance of platelet dysfunctions and increased knowledge of the intracellular processes involved, make analyses of platelet proteome potentially very valuable.

Keywords

Trisodium Citrate Electrode Strip Damage Vessel Wall Glanzmann Thrombasthenia Gradient Mixer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nurden, A. T. (1999) Inherited abnormalities of platelets. Thromb. Haemost. 82, 468–480.PubMedGoogle Scholar
  2. 2.
    Wilkins, M., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphrey-Smith, I., Hochstrasser, D. F., et al. (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 13, 19–50.PubMedGoogle Scholar
  3. 3.
    Anderson, N. G. and Anderson, N. L. (1996) Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 17, 443–453.PubMedCrossRefGoogle Scholar
  4. 4.
    Kellner, R. (2000) Proteomics. Concepts and perspectives. Fresenius J. Anal. Chem. 366, 517–524.PubMedCrossRefGoogle Scholar
  5. 5.
    Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.PubMedGoogle Scholar
  6. 6.
    Lottspeich, F. (1999) Ein Genom—verschiedene Proteome. Angew. Chemie 111, 2630–2647.CrossRefGoogle Scholar
  7. 7.
    Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Tibtech. 17, 121–127.Google Scholar
  8. 8.
    O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.Google Scholar
  9. 9.
    Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutation in mammals. Humangenetik 26, 231–243.PubMedGoogle Scholar
  10. 10.
    Görg, A., Postel, W., and Günther, S. (1988) The current state of two-dimensional electrophoresis with immobilized pH-gradients. Electrophoresis 9, 531–546.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson, C. M. (1983) Staining of proteins on gels: comparisons of dyes and procedures. Methods Enzymol. 91, 236–247.PubMedCrossRefGoogle Scholar
  12. 12.
    Neuhoff, V., Arold, N., Taube, D., and Erhard, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.PubMedCrossRefGoogle Scholar
  13. 13.
    Doherty, N. S., Littman, B. H., Reilly, K., Swindell, A. C., Buss, J. M., and Anderson, N. L. (1998) Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19, 355–363.PubMedCrossRefGoogle Scholar
  14. 14.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez, M. F., Berggren, K., Chernokalskaya, M., Lazarev, V., Robinson, M., and Patton, W F. (2000) A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 17, 3673–3683.CrossRefGoogle Scholar
  16. 16.
    Yan, J. X., Harry, R. A., Spibey, C., and Dunn, M. J. (2000) Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis 17, 3657–3665.CrossRefGoogle Scholar
  17. 17.
    Dunn, M. J. (1992) The analysis of two-dimensional polyacrylamide gels for the construction of protein databases, in Microcomputer in Biochemistry: A Practical Approach (Bryce, C. F. A., ed.), IRL Press, Oxford, pp. 215–242.Google Scholar
  18. 18.
    Appel, R. D. and Hochstrasser, D. F. (1999) Computer analysis of 2-D images, in 2-D Proteome Analysis Protocols (Link, A. J., ed.), Humana Press, Totowa, NJ, pp. 363–381.Google Scholar
  19. 19.
    Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular mass exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  20. 20.
    Fenn, J. B. (1989) Electrosprayionization for mass spectrometry of large biomolecules. Science 246, 64–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Marcus, K., Immler, D., Sternberger, J., and Meyer, H. E. (2000) Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laserdesorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis 21, 2622–2636.PubMedCrossRefGoogle Scholar
  22. 22.
    O’Neill, E. E., Brock, C. J., von Kriegsheim, A. F., Pearce, A. C., Dwek, R. A., Watson, S. P., et al. (2002) Towards complete analysis of the platelet proteome. Proteomics 2, 288–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Marcus, K. (2002) Analyse des Phosphoproteoms humaner Thrombin-stimulierter Thrombozyten. Dissertation, Ruhr-University Bochum.Google Scholar
  24. 24.
    Görg, A., Postel, W., Friedrich, C., Kuick, R., Strahler, J. R., and Hanash, S. M. (1991) Temperature-dependent spot positional variability in two-dimensional polypeptide patterns. Electrophoresis 12, 653–658.PubMedCrossRefGoogle Scholar
  25. 25.
    Görg, A., Boguth, G., Obermaier, C., Posch, A., and Weiss, W. (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): The state of the art and the controversity of vertical versus horizontal systems. Electrophoresis 16, 1079–1086.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Katrin Marcus
    • 1
  • Helmut E. Meyer
    • 1
  1. 1.Medical Proteome-CenterRuhr-University BochumGermany

Personalised recommendations